Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the value of \(\sin 45^{\circ}\), let's use the properties of trigonometry:
1. Understanding the Angle: The angle \(45^{\circ}\) is special in trigonometry. It is one of the standard angles, coming from an \(45^{\circ}-45^{\circ}-90^{\circ}\) triangle.
2. Special Triangle Properties:
- In a \(45^{\circ}-45^{\circ}-90^{\circ}\) triangle, the sides opposite the \(45^{\circ}\) angles are equal.
- If we assume each of these sides has a length of \(1\), then the length of the hypotenuse (by the Pythagorean theorem) will be:
[tex]\[ \text{hypotenuse} = \sqrt{1^2 + 1^2} = \sqrt{2} \][/tex]
3. Sine Definition:
- The sine of an angle in a right triangle is defined as the ratio of the length of the opposite side to the length of the hypotenuse.
- Thus, for \(\sin 45^{\circ}\):
[tex]\[ \sin 45^{\circ} = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}} \][/tex]
4. Rationalizing the Denominator:
- To express this without a square root in the denominator, we multiply the numerator and the denominator by \(\sqrt{2}\):
[tex]\[ \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2} \][/tex]
So, the value of \(\sin 45^{\circ}\) is \(\frac{\sqrt{2}}{2}\).
When you calculate the decimal value of \(\frac{\sqrt{2}}{2}\), you get approximately \(0.7071067811865475\).
Hence, the correct answer matches the numerical value derived, and among the given options:
A. \(\sqrt{2}\)
B. \(\frac{1}{2}\)
C. \(\frac{1}{\sqrt{2}}\)
D. 1
The answer is:
C. [tex]\(\frac{1}{\sqrt{2}}\)[/tex].
1. Understanding the Angle: The angle \(45^{\circ}\) is special in trigonometry. It is one of the standard angles, coming from an \(45^{\circ}-45^{\circ}-90^{\circ}\) triangle.
2. Special Triangle Properties:
- In a \(45^{\circ}-45^{\circ}-90^{\circ}\) triangle, the sides opposite the \(45^{\circ}\) angles are equal.
- If we assume each of these sides has a length of \(1\), then the length of the hypotenuse (by the Pythagorean theorem) will be:
[tex]\[ \text{hypotenuse} = \sqrt{1^2 + 1^2} = \sqrt{2} \][/tex]
3. Sine Definition:
- The sine of an angle in a right triangle is defined as the ratio of the length of the opposite side to the length of the hypotenuse.
- Thus, for \(\sin 45^{\circ}\):
[tex]\[ \sin 45^{\circ} = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}} \][/tex]
4. Rationalizing the Denominator:
- To express this without a square root in the denominator, we multiply the numerator and the denominator by \(\sqrt{2}\):
[tex]\[ \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2} \][/tex]
So, the value of \(\sin 45^{\circ}\) is \(\frac{\sqrt{2}}{2}\).
When you calculate the decimal value of \(\frac{\sqrt{2}}{2}\), you get approximately \(0.7071067811865475\).
Hence, the correct answer matches the numerical value derived, and among the given options:
A. \(\sqrt{2}\)
B. \(\frac{1}{2}\)
C. \(\frac{1}{\sqrt{2}}\)
D. 1
The answer is:
C. [tex]\(\frac{1}{\sqrt{2}}\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.