Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine if the expression \(4n^3 + 5n^2 - 3nt + 6\sqrt{n} + 8\) is a polynomial, we need to consider the fundamental definition of what constitutes a polynomial.
A polynomial in one variable \(n\) is an expression consisting of terms in the form \(a_n n^k\), where \(a_n\) is a coefficient, \(n\) is the variable, and \(k\) is a non-negative integer (0, 1, 2, 3, ...). Additionally, every term should consist of the variable raised only to a non-negative integer power, and operations involved should only be addition, subtraction, and multiplication by a scalar.
Let’s break down the given expression term by term:
1. Term 1: \(4n^3\)
- This term is in the proper form \(a_n n^k\) where \(a_n = 4\) and \(k = 3\). This is a valid polynomial term.
2. Term 2: \(5n^2\)
- Similarly, this is in the form \(a_n n^k\) where \(a_n = 5\) and \(k = 2\). This is also a valid polynomial term.
3. Term 3: \(-3nt\)
- Here, we have the term \(nt\). For this term to be a part of a polynomial in \(n\), the exponent of \(n\) must be a non-negative integer, and the coefficient should not contain any variables. However, the presence of another variable \(t\) violates this rule, suggesting it may not be part of a single-variable polynomial.
4. Term 4: \(6\sqrt{n}\)
- This term is written as \(6n^{1/2}\), where the exponent is \(1/2\). Polynomial terms must have integer exponents, and since \(1/2\) is not an integer, this term does not qualify as part of a polynomial.
5. Term 5: \(8\)
- This is a constant term which is valid in any polynomial.
Reviewing each term, we note that the presence of \(nt\) and \(6n^{1/2}\) disqualifies the expression from being a polynomial. Specifically:
- The term \(-3nt\) includes a variable \(t\) that is not part of a univariate expression.
- The term \(6\sqrt{n}\) introduces a fractional exponent, which is not allowed in a polynomial definition.
Thus, based on these observations, we conclude that the given expression:
[tex]\[4n^3 + 5n^2 - 3nt + 6\sqrt{n} + 8\][/tex]
is not a polynomial.
A polynomial in one variable \(n\) is an expression consisting of terms in the form \(a_n n^k\), where \(a_n\) is a coefficient, \(n\) is the variable, and \(k\) is a non-negative integer (0, 1, 2, 3, ...). Additionally, every term should consist of the variable raised only to a non-negative integer power, and operations involved should only be addition, subtraction, and multiplication by a scalar.
Let’s break down the given expression term by term:
1. Term 1: \(4n^3\)
- This term is in the proper form \(a_n n^k\) where \(a_n = 4\) and \(k = 3\). This is a valid polynomial term.
2. Term 2: \(5n^2\)
- Similarly, this is in the form \(a_n n^k\) where \(a_n = 5\) and \(k = 2\). This is also a valid polynomial term.
3. Term 3: \(-3nt\)
- Here, we have the term \(nt\). For this term to be a part of a polynomial in \(n\), the exponent of \(n\) must be a non-negative integer, and the coefficient should not contain any variables. However, the presence of another variable \(t\) violates this rule, suggesting it may not be part of a single-variable polynomial.
4. Term 4: \(6\sqrt{n}\)
- This term is written as \(6n^{1/2}\), where the exponent is \(1/2\). Polynomial terms must have integer exponents, and since \(1/2\) is not an integer, this term does not qualify as part of a polynomial.
5. Term 5: \(8\)
- This is a constant term which is valid in any polynomial.
Reviewing each term, we note that the presence of \(nt\) and \(6n^{1/2}\) disqualifies the expression from being a polynomial. Specifically:
- The term \(-3nt\) includes a variable \(t\) that is not part of a univariate expression.
- The term \(6\sqrt{n}\) introduces a fractional exponent, which is not allowed in a polynomial definition.
Thus, based on these observations, we conclude that the given expression:
[tex]\[4n^3 + 5n^2 - 3nt + 6\sqrt{n} + 8\][/tex]
is not a polynomial.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.