Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the length of the third side of the triangle with sides of lengths 2 and 5 and an angle of \( 60^\circ \) between them, we can use the Law of Cosines. The Law of Cosines is useful for finding the third side of a triangle when we know two sides and the included angle.
The formula for the Law of Cosines is given by:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(C) \][/tex]
where \( a \) and \( b \) are the lengths of the given sides, \( C \) is the included angle, and \( c \) is the length of the third side opposite the angle \( C \).
Step-by-step solution:
1. Identify the given values:
- Side \( a = 2 \)
- Side \( b = 5 \)
- Angle \( C = 60^\circ \)
2. Convert the angle from degrees to radians: Since most trigonometric functions in mathematics are defined in terms of radians, we first convert \( 60^\circ \) to radians.
[tex]\[ \text{Angle in radians} = \frac{60 \times \pi}{180} = \frac{\pi}{3} \][/tex]
Therefore:
[tex]\[ \cos(60^\circ) = \cos\left(\frac{\pi}{3}\right) \][/tex]
3. Calculate \( \cos(60^\circ) \):
[tex]\[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \][/tex]
4. Apply the Law of Cosines:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(C) \][/tex]
Substitute the values:
[tex]\[ c^2 = 2^2 + 5^2 - 2 \cdot 2 \cdot 5 \cdot \frac{1}{2} \][/tex]
[tex]\[ c^2 = 4 + 25 - 10 \][/tex]
[tex]\[ c^2 = 19 \][/tex]
5. Find the length of side \( c \):
[tex]\[ c = \sqrt{19} \][/tex]
Hence, the length of the third side of the triangle is:
[tex]\[ \boxed{\sqrt{19}} \][/tex]
The correct answer is:
C. [tex]\( \sqrt{19} \)[/tex]
The formula for the Law of Cosines is given by:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(C) \][/tex]
where \( a \) and \( b \) are the lengths of the given sides, \( C \) is the included angle, and \( c \) is the length of the third side opposite the angle \( C \).
Step-by-step solution:
1. Identify the given values:
- Side \( a = 2 \)
- Side \( b = 5 \)
- Angle \( C = 60^\circ \)
2. Convert the angle from degrees to radians: Since most trigonometric functions in mathematics are defined in terms of radians, we first convert \( 60^\circ \) to radians.
[tex]\[ \text{Angle in radians} = \frac{60 \times \pi}{180} = \frac{\pi}{3} \][/tex]
Therefore:
[tex]\[ \cos(60^\circ) = \cos\left(\frac{\pi}{3}\right) \][/tex]
3. Calculate \( \cos(60^\circ) \):
[tex]\[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \][/tex]
4. Apply the Law of Cosines:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(C) \][/tex]
Substitute the values:
[tex]\[ c^2 = 2^2 + 5^2 - 2 \cdot 2 \cdot 5 \cdot \frac{1}{2} \][/tex]
[tex]\[ c^2 = 4 + 25 - 10 \][/tex]
[tex]\[ c^2 = 19 \][/tex]
5. Find the length of side \( c \):
[tex]\[ c = \sqrt{19} \][/tex]
Hence, the length of the third side of the triangle is:
[tex]\[ \boxed{\sqrt{19}} \][/tex]
The correct answer is:
C. [tex]\( \sqrt{19} \)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.