Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure! Let's simplify the given expression step-by-step:
Given expression:
[tex]\[ \left(\frac{10 x^4}{5 x^6}\right)^1 \][/tex]
First, take care of the constants inside the fraction:
[tex]\[ \frac{10}{5} = 2 \][/tex]
So the expression simplifies to:
[tex]\[ \left(2 \frac{x^4}{x^6}\right)^1 \][/tex]
Next, simplify the exponents using the property of exponents \(\frac{x^a}{x^b} = x^{a - b}\):
[tex]\[ \frac{x^4}{x^6} = x^{4 - 6} = x^{-2} \][/tex]
Substituting back:
[tex]\[ \left(2 x^{-2}\right)^1 \][/tex]
Given that any expression raised to the power of 1 remains the same:
[tex]\[ 2 x^{-2} \][/tex]
So the simplified form of the given expression is:
[tex]\[ 2 x^{-2} \][/tex]
If you prefer having only positive exponents, you can rewrite \(x^{-2}\) as \(\frac{1}{x^2}\):
[tex]\[ 2 \cdot \frac{1}{x^2} = \frac{2}{x^2} \][/tex]
Thus, the simplified expression can also be written as:
[tex]\[ \frac{2}{x^2} \][/tex]
In conclusion, the simplified expression is:
[tex]\[ 2 x^{-2} \text{ or } \frac{2}{x^2} \][/tex]
Given expression:
[tex]\[ \left(\frac{10 x^4}{5 x^6}\right)^1 \][/tex]
First, take care of the constants inside the fraction:
[tex]\[ \frac{10}{5} = 2 \][/tex]
So the expression simplifies to:
[tex]\[ \left(2 \frac{x^4}{x^6}\right)^1 \][/tex]
Next, simplify the exponents using the property of exponents \(\frac{x^a}{x^b} = x^{a - b}\):
[tex]\[ \frac{x^4}{x^6} = x^{4 - 6} = x^{-2} \][/tex]
Substituting back:
[tex]\[ \left(2 x^{-2}\right)^1 \][/tex]
Given that any expression raised to the power of 1 remains the same:
[tex]\[ 2 x^{-2} \][/tex]
So the simplified form of the given expression is:
[tex]\[ 2 x^{-2} \][/tex]
If you prefer having only positive exponents, you can rewrite \(x^{-2}\) as \(\frac{1}{x^2}\):
[tex]\[ 2 \cdot \frac{1}{x^2} = \frac{2}{x^2} \][/tex]
Thus, the simplified expression can also be written as:
[tex]\[ \frac{2}{x^2} \][/tex]
In conclusion, the simplified expression is:
[tex]\[ 2 x^{-2} \text{ or } \frac{2}{x^2} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.