At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's walk through the detailed, step-by-step solution to determine the final velocity of the bike.
Given:
- Initial velocity of the bike (\(u\)): \(10 \, \text{m/s}\)
- Acceleration (\(a\)): \(1.2 \, \text{m/s}^2\)
- Time (\(t\)): \(10 \, \text{s}\)
We need to calculate the final velocity (\(v\)) of the bike after 10 seconds of acceleration.
The formula to calculate the final velocity when an object is accelerating uniformly is:
[tex]\[ v = u + at \][/tex]
where:
- \(v\) is the final velocity
- \(u\) is the initial velocity
- \(a\) is the acceleration
- \(t\) is the time
Substituting the given values into the formula:
[tex]\[ v = 10 \, \text{m/s} + (1.2 \, \text{m/s}^2 \times 10 \, \text{s}) \][/tex]
Let's break it down:
1. First, calculate the product of the acceleration and the time:
[tex]\[ 1.2 \, \text{m/s}^2 \times 10 \, \text{s} = 12 \, \text{m/s} \][/tex]
2. Then, add this result to the initial velocity:
[tex]\[ v = 10 \, \text{m/s} + 12 \, \text{m/s} = 22 \, \text{m/s} \][/tex]
Therefore, the final velocity of the bike after 10 seconds is:
[tex]\[ \boxed{22 \, \text{m/s}} \][/tex]
Given:
- Initial velocity of the bike (\(u\)): \(10 \, \text{m/s}\)
- Acceleration (\(a\)): \(1.2 \, \text{m/s}^2\)
- Time (\(t\)): \(10 \, \text{s}\)
We need to calculate the final velocity (\(v\)) of the bike after 10 seconds of acceleration.
The formula to calculate the final velocity when an object is accelerating uniformly is:
[tex]\[ v = u + at \][/tex]
where:
- \(v\) is the final velocity
- \(u\) is the initial velocity
- \(a\) is the acceleration
- \(t\) is the time
Substituting the given values into the formula:
[tex]\[ v = 10 \, \text{m/s} + (1.2 \, \text{m/s}^2 \times 10 \, \text{s}) \][/tex]
Let's break it down:
1. First, calculate the product of the acceleration and the time:
[tex]\[ 1.2 \, \text{m/s}^2 \times 10 \, \text{s} = 12 \, \text{m/s} \][/tex]
2. Then, add this result to the initial velocity:
[tex]\[ v = 10 \, \text{m/s} + 12 \, \text{m/s} = 22 \, \text{m/s} \][/tex]
Therefore, the final velocity of the bike after 10 seconds is:
[tex]\[ \boxed{22 \, \text{m/s}} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.