Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the equation \(4 + \sqrt{5x + 66} = x + 10\), follow these steps:
1. Isolate the square root term:
First, isolate the square root on one side of the equation. We can do that by subtracting 4 from both sides:
[tex]\[ \sqrt{5x + 66} = x + 10 - 4 \][/tex]
Simplifying the right side gives us:
[tex]\[ \sqrt{5x + 66} = x + 6 \][/tex]
2. Square both sides of the equation:
To eliminate the square root, square both sides:
[tex]\[ (\sqrt{5x + 66})^2 = (x + 6)^2 \][/tex]
This simplifies to:
[tex]\[ 5x + 66 = (x + 6)(x + 6) \][/tex]
Expanding the right-hand side, we get:
[tex]\[ 5x + 66 = x^2 + 12x + 36 \][/tex]
3. Rearrange the equation into a standard quadratic form:
Now, move all terms to one side of the equation to set it equal to zero:
[tex]\[ 0 = x^2 + 12x + 36 - 5x - 66 \][/tex]
Simplify this:
[tex]\[ 0 = x^2 + 7x - 30 \][/tex]
4. Solve the quadratic equation:
Factor the quadratic equation:
[tex]\[ x^2 + 7x - 30 = 0 \][/tex]
Looking for two numbers that multiply to -30 and add to 7, we find:
[tex]\[ (x + 10)(x - 3) = 0 \][/tex]
Setting each factor equal to zero gives the potential solutions:
[tex]\[ x + 10 = 0 \implies x = -10 \][/tex]
[tex]\[ x - 3 = 0 \implies x = 3 \][/tex]
5. Check the potential solutions in the original equation:
- For \(x = -10\):
[tex]\[ 4 + \sqrt{5(-10) + 66} = -10 + 10 \][/tex]
[tex]\[ 4 + \sqrt{-50 + 66} = 0 \][/tex]
[tex]\[ 4 + \sqrt{16} = 0 \][/tex]
[tex]\[ 4 + 4 = 0 \quad \text{(False)} \][/tex]
So, \(x = -10\) is not a solution.
- For \(x = 3\):
[tex]\[ 4 + \sqrt{5(3) + 66} = 3 + 10 \][/tex]
[tex]\[ 4 + \sqrt{15 + 66} = 13 \][/tex]
[tex]\[ 4 + \sqrt{81} = 13 \][/tex]
[tex]\[ 4 + 9 = 13 \quad \text{(True)} \][/tex]
So, \(x = 3\) is a valid solution.
Hence, the only solution to the equation \(4 + \sqrt{5x + 66} = x + 10\) is:
[tex]\[ \boxed{x = 3} \][/tex]
1. Isolate the square root term:
First, isolate the square root on one side of the equation. We can do that by subtracting 4 from both sides:
[tex]\[ \sqrt{5x + 66} = x + 10 - 4 \][/tex]
Simplifying the right side gives us:
[tex]\[ \sqrt{5x + 66} = x + 6 \][/tex]
2. Square both sides of the equation:
To eliminate the square root, square both sides:
[tex]\[ (\sqrt{5x + 66})^2 = (x + 6)^2 \][/tex]
This simplifies to:
[tex]\[ 5x + 66 = (x + 6)(x + 6) \][/tex]
Expanding the right-hand side, we get:
[tex]\[ 5x + 66 = x^2 + 12x + 36 \][/tex]
3. Rearrange the equation into a standard quadratic form:
Now, move all terms to one side of the equation to set it equal to zero:
[tex]\[ 0 = x^2 + 12x + 36 - 5x - 66 \][/tex]
Simplify this:
[tex]\[ 0 = x^2 + 7x - 30 \][/tex]
4. Solve the quadratic equation:
Factor the quadratic equation:
[tex]\[ x^2 + 7x - 30 = 0 \][/tex]
Looking for two numbers that multiply to -30 and add to 7, we find:
[tex]\[ (x + 10)(x - 3) = 0 \][/tex]
Setting each factor equal to zero gives the potential solutions:
[tex]\[ x + 10 = 0 \implies x = -10 \][/tex]
[tex]\[ x - 3 = 0 \implies x = 3 \][/tex]
5. Check the potential solutions in the original equation:
- For \(x = -10\):
[tex]\[ 4 + \sqrt{5(-10) + 66} = -10 + 10 \][/tex]
[tex]\[ 4 + \sqrt{-50 + 66} = 0 \][/tex]
[tex]\[ 4 + \sqrt{16} = 0 \][/tex]
[tex]\[ 4 + 4 = 0 \quad \text{(False)} \][/tex]
So, \(x = -10\) is not a solution.
- For \(x = 3\):
[tex]\[ 4 + \sqrt{5(3) + 66} = 3 + 10 \][/tex]
[tex]\[ 4 + \sqrt{15 + 66} = 13 \][/tex]
[tex]\[ 4 + \sqrt{81} = 13 \][/tex]
[tex]\[ 4 + 9 = 13 \quad \text{(True)} \][/tex]
So, \(x = 3\) is a valid solution.
Hence, the only solution to the equation \(4 + \sqrt{5x + 66} = x + 10\) is:
[tex]\[ \boxed{x = 3} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.