At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the equation \(4 + \sqrt{5x + 66} = x + 10\), follow these steps:
1. Isolate the square root term:
First, isolate the square root on one side of the equation. We can do that by subtracting 4 from both sides:
[tex]\[ \sqrt{5x + 66} = x + 10 - 4 \][/tex]
Simplifying the right side gives us:
[tex]\[ \sqrt{5x + 66} = x + 6 \][/tex]
2. Square both sides of the equation:
To eliminate the square root, square both sides:
[tex]\[ (\sqrt{5x + 66})^2 = (x + 6)^2 \][/tex]
This simplifies to:
[tex]\[ 5x + 66 = (x + 6)(x + 6) \][/tex]
Expanding the right-hand side, we get:
[tex]\[ 5x + 66 = x^2 + 12x + 36 \][/tex]
3. Rearrange the equation into a standard quadratic form:
Now, move all terms to one side of the equation to set it equal to zero:
[tex]\[ 0 = x^2 + 12x + 36 - 5x - 66 \][/tex]
Simplify this:
[tex]\[ 0 = x^2 + 7x - 30 \][/tex]
4. Solve the quadratic equation:
Factor the quadratic equation:
[tex]\[ x^2 + 7x - 30 = 0 \][/tex]
Looking for two numbers that multiply to -30 and add to 7, we find:
[tex]\[ (x + 10)(x - 3) = 0 \][/tex]
Setting each factor equal to zero gives the potential solutions:
[tex]\[ x + 10 = 0 \implies x = -10 \][/tex]
[tex]\[ x - 3 = 0 \implies x = 3 \][/tex]
5. Check the potential solutions in the original equation:
- For \(x = -10\):
[tex]\[ 4 + \sqrt{5(-10) + 66} = -10 + 10 \][/tex]
[tex]\[ 4 + \sqrt{-50 + 66} = 0 \][/tex]
[tex]\[ 4 + \sqrt{16} = 0 \][/tex]
[tex]\[ 4 + 4 = 0 \quad \text{(False)} \][/tex]
So, \(x = -10\) is not a solution.
- For \(x = 3\):
[tex]\[ 4 + \sqrt{5(3) + 66} = 3 + 10 \][/tex]
[tex]\[ 4 + \sqrt{15 + 66} = 13 \][/tex]
[tex]\[ 4 + \sqrt{81} = 13 \][/tex]
[tex]\[ 4 + 9 = 13 \quad \text{(True)} \][/tex]
So, \(x = 3\) is a valid solution.
Hence, the only solution to the equation \(4 + \sqrt{5x + 66} = x + 10\) is:
[tex]\[ \boxed{x = 3} \][/tex]
1. Isolate the square root term:
First, isolate the square root on one side of the equation. We can do that by subtracting 4 from both sides:
[tex]\[ \sqrt{5x + 66} = x + 10 - 4 \][/tex]
Simplifying the right side gives us:
[tex]\[ \sqrt{5x + 66} = x + 6 \][/tex]
2. Square both sides of the equation:
To eliminate the square root, square both sides:
[tex]\[ (\sqrt{5x + 66})^2 = (x + 6)^2 \][/tex]
This simplifies to:
[tex]\[ 5x + 66 = (x + 6)(x + 6) \][/tex]
Expanding the right-hand side, we get:
[tex]\[ 5x + 66 = x^2 + 12x + 36 \][/tex]
3. Rearrange the equation into a standard quadratic form:
Now, move all terms to one side of the equation to set it equal to zero:
[tex]\[ 0 = x^2 + 12x + 36 - 5x - 66 \][/tex]
Simplify this:
[tex]\[ 0 = x^2 + 7x - 30 \][/tex]
4. Solve the quadratic equation:
Factor the quadratic equation:
[tex]\[ x^2 + 7x - 30 = 0 \][/tex]
Looking for two numbers that multiply to -30 and add to 7, we find:
[tex]\[ (x + 10)(x - 3) = 0 \][/tex]
Setting each factor equal to zero gives the potential solutions:
[tex]\[ x + 10 = 0 \implies x = -10 \][/tex]
[tex]\[ x - 3 = 0 \implies x = 3 \][/tex]
5. Check the potential solutions in the original equation:
- For \(x = -10\):
[tex]\[ 4 + \sqrt{5(-10) + 66} = -10 + 10 \][/tex]
[tex]\[ 4 + \sqrt{-50 + 66} = 0 \][/tex]
[tex]\[ 4 + \sqrt{16} = 0 \][/tex]
[tex]\[ 4 + 4 = 0 \quad \text{(False)} \][/tex]
So, \(x = -10\) is not a solution.
- For \(x = 3\):
[tex]\[ 4 + \sqrt{5(3) + 66} = 3 + 10 \][/tex]
[tex]\[ 4 + \sqrt{15 + 66} = 13 \][/tex]
[tex]\[ 4 + \sqrt{81} = 13 \][/tex]
[tex]\[ 4 + 9 = 13 \quad \text{(True)} \][/tex]
So, \(x = 3\) is a valid solution.
Hence, the only solution to the equation \(4 + \sqrt{5x + 66} = x + 10\) is:
[tex]\[ \boxed{x = 3} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.