Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

What is the solution of [tex]4+\sqrt{5x+66}=x+10[/tex]?

A. [tex]x=-10[/tex]
B. [tex]x=3[/tex]
C. [tex]x=-10 \text{ or } x=3[/tex]
D. No solution

Sagot :

To solve the equation \(4 + \sqrt{5x + 66} = x + 10\), follow these steps:

1. Isolate the square root term:

First, isolate the square root on one side of the equation. We can do that by subtracting 4 from both sides:
[tex]\[ \sqrt{5x + 66} = x + 10 - 4 \][/tex]
Simplifying the right side gives us:
[tex]\[ \sqrt{5x + 66} = x + 6 \][/tex]

2. Square both sides of the equation:

To eliminate the square root, square both sides:
[tex]\[ (\sqrt{5x + 66})^2 = (x + 6)^2 \][/tex]
This simplifies to:
[tex]\[ 5x + 66 = (x + 6)(x + 6) \][/tex]
Expanding the right-hand side, we get:
[tex]\[ 5x + 66 = x^2 + 12x + 36 \][/tex]

3. Rearrange the equation into a standard quadratic form:

Now, move all terms to one side of the equation to set it equal to zero:
[tex]\[ 0 = x^2 + 12x + 36 - 5x - 66 \][/tex]
Simplify this:
[tex]\[ 0 = x^2 + 7x - 30 \][/tex]

4. Solve the quadratic equation:

Factor the quadratic equation:
[tex]\[ x^2 + 7x - 30 = 0 \][/tex]
Looking for two numbers that multiply to -30 and add to 7, we find:
[tex]\[ (x + 10)(x - 3) = 0 \][/tex]
Setting each factor equal to zero gives the potential solutions:
[tex]\[ x + 10 = 0 \implies x = -10 \][/tex]
[tex]\[ x - 3 = 0 \implies x = 3 \][/tex]

5. Check the potential solutions in the original equation:

- For \(x = -10\):
[tex]\[ 4 + \sqrt{5(-10) + 66} = -10 + 10 \][/tex]
[tex]\[ 4 + \sqrt{-50 + 66} = 0 \][/tex]
[tex]\[ 4 + \sqrt{16} = 0 \][/tex]
[tex]\[ 4 + 4 = 0 \quad \text{(False)} \][/tex]
So, \(x = -10\) is not a solution.

- For \(x = 3\):
[tex]\[ 4 + \sqrt{5(3) + 66} = 3 + 10 \][/tex]
[tex]\[ 4 + \sqrt{15 + 66} = 13 \][/tex]
[tex]\[ 4 + \sqrt{81} = 13 \][/tex]
[tex]\[ 4 + 9 = 13 \quad \text{(True)} \][/tex]
So, \(x = 3\) is a valid solution.

Hence, the only solution to the equation \(4 + \sqrt{5x + 66} = x + 10\) is:
[tex]\[ \boxed{x = 3} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.