Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Alright, let's address the problem step by step.
First, let's write down the given values:
- The numerator is \( 123.48 \) Newtons (N), which represents the force.
- The denominator is \( 0.014 \) square meters (\( m^2 \)), which represents the area.
We are tasked with finding the result of the division of these two values:
[tex]\[ \frac{123.48 \text{ N}}{0.014 \text{ m}^2} \][/tex]
1. Division:
- To find the result of the division, we divide the force by the area.
[tex]\[ \frac{123.48 \text{ N}}{0.014 \text{ m}^2} = 8820 \text{ N/m}^2 \][/tex]
So, the result of this division is \( 8820 \text{ N/m}^2 \).
2. Comparison with the Given Value:
- We need to check if the calculated result (\( 8820 \text{ N/m}^2 \)) is equal to the given value, which is \( 8 \text{ N/m}^2 \).
[tex]\[ 8820 \neq 8 \][/tex]
Thus, the comparison shows that \( 8820 \text{ N/m}^2 \) is not equal to \( 8 \text{ N/m}^2 \).
3. Conclusion:
- After performing the division, we obtained \( 8820 \text{ N/m}^2 \), which indicates that the force per unit area is \( 8820 \text{ N/m}^2 \).
- The given value of \( 8 \text{ N/m}^2 \) does not match our calculated result.
Therefore, the detailed result given the original problem statement is that the solution does not equal \( 8 \text{ N/m}^2 \); it actually equals \( 8820 \text{ N/m}^2 \).
In summary, the step-by-step breakdown is:
[tex]\[ \frac{123.48 \text{ N}}{0.014 \text{ m}^2} = 8820 \text{ N/m}^2 \][/tex]
[tex]\[ 8820 \neq 8 \][/tex]
So, the answer does not match the given value of [tex]\( 8 \)[/tex].
First, let's write down the given values:
- The numerator is \( 123.48 \) Newtons (N), which represents the force.
- The denominator is \( 0.014 \) square meters (\( m^2 \)), which represents the area.
We are tasked with finding the result of the division of these two values:
[tex]\[ \frac{123.48 \text{ N}}{0.014 \text{ m}^2} \][/tex]
1. Division:
- To find the result of the division, we divide the force by the area.
[tex]\[ \frac{123.48 \text{ N}}{0.014 \text{ m}^2} = 8820 \text{ N/m}^2 \][/tex]
So, the result of this division is \( 8820 \text{ N/m}^2 \).
2. Comparison with the Given Value:
- We need to check if the calculated result (\( 8820 \text{ N/m}^2 \)) is equal to the given value, which is \( 8 \text{ N/m}^2 \).
[tex]\[ 8820 \neq 8 \][/tex]
Thus, the comparison shows that \( 8820 \text{ N/m}^2 \) is not equal to \( 8 \text{ N/m}^2 \).
3. Conclusion:
- After performing the division, we obtained \( 8820 \text{ N/m}^2 \), which indicates that the force per unit area is \( 8820 \text{ N/m}^2 \).
- The given value of \( 8 \text{ N/m}^2 \) does not match our calculated result.
Therefore, the detailed result given the original problem statement is that the solution does not equal \( 8 \text{ N/m}^2 \); it actually equals \( 8820 \text{ N/m}^2 \).
In summary, the step-by-step breakdown is:
[tex]\[ \frac{123.48 \text{ N}}{0.014 \text{ m}^2} = 8820 \text{ N/m}^2 \][/tex]
[tex]\[ 8820 \neq 8 \][/tex]
So, the answer does not match the given value of [tex]\( 8 \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.