Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Alright, let's address the problem step by step.
First, let's write down the given values:
- The numerator is \( 123.48 \) Newtons (N), which represents the force.
- The denominator is \( 0.014 \) square meters (\( m^2 \)), which represents the area.
We are tasked with finding the result of the division of these two values:
[tex]\[ \frac{123.48 \text{ N}}{0.014 \text{ m}^2} \][/tex]
1. Division:
- To find the result of the division, we divide the force by the area.
[tex]\[ \frac{123.48 \text{ N}}{0.014 \text{ m}^2} = 8820 \text{ N/m}^2 \][/tex]
So, the result of this division is \( 8820 \text{ N/m}^2 \).
2. Comparison with the Given Value:
- We need to check if the calculated result (\( 8820 \text{ N/m}^2 \)) is equal to the given value, which is \( 8 \text{ N/m}^2 \).
[tex]\[ 8820 \neq 8 \][/tex]
Thus, the comparison shows that \( 8820 \text{ N/m}^2 \) is not equal to \( 8 \text{ N/m}^2 \).
3. Conclusion:
- After performing the division, we obtained \( 8820 \text{ N/m}^2 \), which indicates that the force per unit area is \( 8820 \text{ N/m}^2 \).
- The given value of \( 8 \text{ N/m}^2 \) does not match our calculated result.
Therefore, the detailed result given the original problem statement is that the solution does not equal \( 8 \text{ N/m}^2 \); it actually equals \( 8820 \text{ N/m}^2 \).
In summary, the step-by-step breakdown is:
[tex]\[ \frac{123.48 \text{ N}}{0.014 \text{ m}^2} = 8820 \text{ N/m}^2 \][/tex]
[tex]\[ 8820 \neq 8 \][/tex]
So, the answer does not match the given value of [tex]\( 8 \)[/tex].
First, let's write down the given values:
- The numerator is \( 123.48 \) Newtons (N), which represents the force.
- The denominator is \( 0.014 \) square meters (\( m^2 \)), which represents the area.
We are tasked with finding the result of the division of these two values:
[tex]\[ \frac{123.48 \text{ N}}{0.014 \text{ m}^2} \][/tex]
1. Division:
- To find the result of the division, we divide the force by the area.
[tex]\[ \frac{123.48 \text{ N}}{0.014 \text{ m}^2} = 8820 \text{ N/m}^2 \][/tex]
So, the result of this division is \( 8820 \text{ N/m}^2 \).
2. Comparison with the Given Value:
- We need to check if the calculated result (\( 8820 \text{ N/m}^2 \)) is equal to the given value, which is \( 8 \text{ N/m}^2 \).
[tex]\[ 8820 \neq 8 \][/tex]
Thus, the comparison shows that \( 8820 \text{ N/m}^2 \) is not equal to \( 8 \text{ N/m}^2 \).
3. Conclusion:
- After performing the division, we obtained \( 8820 \text{ N/m}^2 \), which indicates that the force per unit area is \( 8820 \text{ N/m}^2 \).
- The given value of \( 8 \text{ N/m}^2 \) does not match our calculated result.
Therefore, the detailed result given the original problem statement is that the solution does not equal \( 8 \text{ N/m}^2 \); it actually equals \( 8820 \text{ N/m}^2 \).
In summary, the step-by-step breakdown is:
[tex]\[ \frac{123.48 \text{ N}}{0.014 \text{ m}^2} = 8820 \text{ N/m}^2 \][/tex]
[tex]\[ 8820 \neq 8 \][/tex]
So, the answer does not match the given value of [tex]\( 8 \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.