Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Alright, let's address the problem step by step.
First, let's write down the given values:
- The numerator is \( 123.48 \) Newtons (N), which represents the force.
- The denominator is \( 0.014 \) square meters (\( m^2 \)), which represents the area.
We are tasked with finding the result of the division of these two values:
[tex]\[ \frac{123.48 \text{ N}}{0.014 \text{ m}^2} \][/tex]
1. Division:
- To find the result of the division, we divide the force by the area.
[tex]\[ \frac{123.48 \text{ N}}{0.014 \text{ m}^2} = 8820 \text{ N/m}^2 \][/tex]
So, the result of this division is \( 8820 \text{ N/m}^2 \).
2. Comparison with the Given Value:
- We need to check if the calculated result (\( 8820 \text{ N/m}^2 \)) is equal to the given value, which is \( 8 \text{ N/m}^2 \).
[tex]\[ 8820 \neq 8 \][/tex]
Thus, the comparison shows that \( 8820 \text{ N/m}^2 \) is not equal to \( 8 \text{ N/m}^2 \).
3. Conclusion:
- After performing the division, we obtained \( 8820 \text{ N/m}^2 \), which indicates that the force per unit area is \( 8820 \text{ N/m}^2 \).
- The given value of \( 8 \text{ N/m}^2 \) does not match our calculated result.
Therefore, the detailed result given the original problem statement is that the solution does not equal \( 8 \text{ N/m}^2 \); it actually equals \( 8820 \text{ N/m}^2 \).
In summary, the step-by-step breakdown is:
[tex]\[ \frac{123.48 \text{ N}}{0.014 \text{ m}^2} = 8820 \text{ N/m}^2 \][/tex]
[tex]\[ 8820 \neq 8 \][/tex]
So, the answer does not match the given value of [tex]\( 8 \)[/tex].
First, let's write down the given values:
- The numerator is \( 123.48 \) Newtons (N), which represents the force.
- The denominator is \( 0.014 \) square meters (\( m^2 \)), which represents the area.
We are tasked with finding the result of the division of these two values:
[tex]\[ \frac{123.48 \text{ N}}{0.014 \text{ m}^2} \][/tex]
1. Division:
- To find the result of the division, we divide the force by the area.
[tex]\[ \frac{123.48 \text{ N}}{0.014 \text{ m}^2} = 8820 \text{ N/m}^2 \][/tex]
So, the result of this division is \( 8820 \text{ N/m}^2 \).
2. Comparison with the Given Value:
- We need to check if the calculated result (\( 8820 \text{ N/m}^2 \)) is equal to the given value, which is \( 8 \text{ N/m}^2 \).
[tex]\[ 8820 \neq 8 \][/tex]
Thus, the comparison shows that \( 8820 \text{ N/m}^2 \) is not equal to \( 8 \text{ N/m}^2 \).
3. Conclusion:
- After performing the division, we obtained \( 8820 \text{ N/m}^2 \), which indicates that the force per unit area is \( 8820 \text{ N/m}^2 \).
- The given value of \( 8 \text{ N/m}^2 \) does not match our calculated result.
Therefore, the detailed result given the original problem statement is that the solution does not equal \( 8 \text{ N/m}^2 \); it actually equals \( 8820 \text{ N/m}^2 \).
In summary, the step-by-step breakdown is:
[tex]\[ \frac{123.48 \text{ N}}{0.014 \text{ m}^2} = 8820 \text{ N/m}^2 \][/tex]
[tex]\[ 8820 \neq 8 \][/tex]
So, the answer does not match the given value of [tex]\( 8 \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.