Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the equation of the line that is parallel to the given line and passes through the specified point, let's analyze the given information.
1. The given line is \( x = -6 \). This is a vertical line because the equation is in the form \( x = \text{constant} \). Vertical lines always have the form \( x = k \), where \( k \) is a constant value.
2. A line that is parallel to \( x = -6 \) must also be a vertical line since parallel lines have the same orientation. Therefore, the equation of the parallel line will be in the form \( x = k \).
3. Now, we need to determine the specific value of \( k \) such that the line passes through the given point, \((-4, -6)\). The vertical line passing through any point has the equation \( x = \text{the x-coordinate of the point} \).
4. Here, the x-coordinate of the point \((-4, -6)\) is \(-4\).
Therefore, the equation of the line that is parallel to \( x = -6 \) and passes through the point \((-4, -6)\) is:
[tex]\[ x = -4 \][/tex]
Hence, the correct answer is:
[tex]\[ x = -4 \][/tex]
1. The given line is \( x = -6 \). This is a vertical line because the equation is in the form \( x = \text{constant} \). Vertical lines always have the form \( x = k \), where \( k \) is a constant value.
2. A line that is parallel to \( x = -6 \) must also be a vertical line since parallel lines have the same orientation. Therefore, the equation of the parallel line will be in the form \( x = k \).
3. Now, we need to determine the specific value of \( k \) such that the line passes through the given point, \((-4, -6)\). The vertical line passing through any point has the equation \( x = \text{the x-coordinate of the point} \).
4. Here, the x-coordinate of the point \((-4, -6)\) is \(-4\).
Therefore, the equation of the line that is parallel to \( x = -6 \) and passes through the point \((-4, -6)\) is:
[tex]\[ x = -4 \][/tex]
Hence, the correct answer is:
[tex]\[ x = -4 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.