Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the formula for the \( n \)th derivative \( y^{(n)} \) of the function \( y = \frac{1}{x + 1} \), we can follow a pattern by calculating the first few derivatives and identifying a general form.
Given:
[tex]\[ y = \frac{1}{x + 1} \][/tex]
Let's calculate the first few derivatives:
1. First derivative \( y' \):
[tex]\[ y' = \frac{d}{dx} \left( \frac{1}{x + 1} \right) \][/tex]
Using the chain rule, we get:
[tex]\[ y' = -\frac{1}{(x + 1)^2} \][/tex]
2. Second derivative \( y'' \):
[tex]\[ y'' = \frac{d}{dx} \left( -\frac{1}{(x + 1)^2} \right) \][/tex]
Using the chain rule again, we get:
[tex]\[ y'' = -\frac{d}{dx} \left( (x + 1)^{-2} \right) \][/tex]
[tex]\[ y'' = -(-2) \cdot (x + 1)^{-3} \][/tex]
[tex]\[ y'' = \frac{2}{(x + 1)^3} \][/tex]
3. Third derivative \( y''' \):
[tex]\[ y''' = \frac{d}{dx} \left( \frac{2}{(x + 1)^3} \right) \][/tex]
Using the chain rule:
[tex]\[ y''' = 2 \cdot \frac{d}{dx} \left( (x + 1)^{-3} \right) \][/tex]
[tex]\[ y''' = 2 \cdot (-3) \cdot (x + 1)^{-4} \][/tex]
[tex]\[ y''' = -\frac{6}{(x + 1)^4} \][/tex]
From the above calculations, we observe a pattern in the derivatives. Specifically, each derivative alternates in sign and has the general form:
[tex]\[ y^{(n)} = \frac{(-1)^n \cdot n!}{(x + 1)^{n + 1}} \][/tex]
where \( n! \) (n factorial) represents the product of all positive integers up to \( n \), and \( (x + 1)^{n + 1} \) is the term in the denominator raised to the power \( n + 1 \).
Therefore, the formula for the \( n \)th derivative \( y^{(n)} \) of the function \( y = \frac{1}{x + 1} \) is:
[tex]\[ y^{(n)} = \frac{(-1)^n \cdot n!}{(x + 1)^{n + 1}} \][/tex]
Given:
[tex]\[ y = \frac{1}{x + 1} \][/tex]
Let's calculate the first few derivatives:
1. First derivative \( y' \):
[tex]\[ y' = \frac{d}{dx} \left( \frac{1}{x + 1} \right) \][/tex]
Using the chain rule, we get:
[tex]\[ y' = -\frac{1}{(x + 1)^2} \][/tex]
2. Second derivative \( y'' \):
[tex]\[ y'' = \frac{d}{dx} \left( -\frac{1}{(x + 1)^2} \right) \][/tex]
Using the chain rule again, we get:
[tex]\[ y'' = -\frac{d}{dx} \left( (x + 1)^{-2} \right) \][/tex]
[tex]\[ y'' = -(-2) \cdot (x + 1)^{-3} \][/tex]
[tex]\[ y'' = \frac{2}{(x + 1)^3} \][/tex]
3. Third derivative \( y''' \):
[tex]\[ y''' = \frac{d}{dx} \left( \frac{2}{(x + 1)^3} \right) \][/tex]
Using the chain rule:
[tex]\[ y''' = 2 \cdot \frac{d}{dx} \left( (x + 1)^{-3} \right) \][/tex]
[tex]\[ y''' = 2 \cdot (-3) \cdot (x + 1)^{-4} \][/tex]
[tex]\[ y''' = -\frac{6}{(x + 1)^4} \][/tex]
From the above calculations, we observe a pattern in the derivatives. Specifically, each derivative alternates in sign and has the general form:
[tex]\[ y^{(n)} = \frac{(-1)^n \cdot n!}{(x + 1)^{n + 1}} \][/tex]
where \( n! \) (n factorial) represents the product of all positive integers up to \( n \), and \( (x + 1)^{n + 1} \) is the term in the denominator raised to the power \( n + 1 \).
Therefore, the formula for the \( n \)th derivative \( y^{(n)} \) of the function \( y = \frac{1}{x + 1} \) is:
[tex]\[ y^{(n)} = \frac{(-1)^n \cdot n!}{(x + 1)^{n + 1}} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.