Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the formula for the \( n \)th derivative \( y^{(n)} \) of the function \( y = \frac{1}{x + 1} \), we can follow a pattern by calculating the first few derivatives and identifying a general form.
Given:
[tex]\[ y = \frac{1}{x + 1} \][/tex]
Let's calculate the first few derivatives:
1. First derivative \( y' \):
[tex]\[ y' = \frac{d}{dx} \left( \frac{1}{x + 1} \right) \][/tex]
Using the chain rule, we get:
[tex]\[ y' = -\frac{1}{(x + 1)^2} \][/tex]
2. Second derivative \( y'' \):
[tex]\[ y'' = \frac{d}{dx} \left( -\frac{1}{(x + 1)^2} \right) \][/tex]
Using the chain rule again, we get:
[tex]\[ y'' = -\frac{d}{dx} \left( (x + 1)^{-2} \right) \][/tex]
[tex]\[ y'' = -(-2) \cdot (x + 1)^{-3} \][/tex]
[tex]\[ y'' = \frac{2}{(x + 1)^3} \][/tex]
3. Third derivative \( y''' \):
[tex]\[ y''' = \frac{d}{dx} \left( \frac{2}{(x + 1)^3} \right) \][/tex]
Using the chain rule:
[tex]\[ y''' = 2 \cdot \frac{d}{dx} \left( (x + 1)^{-3} \right) \][/tex]
[tex]\[ y''' = 2 \cdot (-3) \cdot (x + 1)^{-4} \][/tex]
[tex]\[ y''' = -\frac{6}{(x + 1)^4} \][/tex]
From the above calculations, we observe a pattern in the derivatives. Specifically, each derivative alternates in sign and has the general form:
[tex]\[ y^{(n)} = \frac{(-1)^n \cdot n!}{(x + 1)^{n + 1}} \][/tex]
where \( n! \) (n factorial) represents the product of all positive integers up to \( n \), and \( (x + 1)^{n + 1} \) is the term in the denominator raised to the power \( n + 1 \).
Therefore, the formula for the \( n \)th derivative \( y^{(n)} \) of the function \( y = \frac{1}{x + 1} \) is:
[tex]\[ y^{(n)} = \frac{(-1)^n \cdot n!}{(x + 1)^{n + 1}} \][/tex]
Given:
[tex]\[ y = \frac{1}{x + 1} \][/tex]
Let's calculate the first few derivatives:
1. First derivative \( y' \):
[tex]\[ y' = \frac{d}{dx} \left( \frac{1}{x + 1} \right) \][/tex]
Using the chain rule, we get:
[tex]\[ y' = -\frac{1}{(x + 1)^2} \][/tex]
2. Second derivative \( y'' \):
[tex]\[ y'' = \frac{d}{dx} \left( -\frac{1}{(x + 1)^2} \right) \][/tex]
Using the chain rule again, we get:
[tex]\[ y'' = -\frac{d}{dx} \left( (x + 1)^{-2} \right) \][/tex]
[tex]\[ y'' = -(-2) \cdot (x + 1)^{-3} \][/tex]
[tex]\[ y'' = \frac{2}{(x + 1)^3} \][/tex]
3. Third derivative \( y''' \):
[tex]\[ y''' = \frac{d}{dx} \left( \frac{2}{(x + 1)^3} \right) \][/tex]
Using the chain rule:
[tex]\[ y''' = 2 \cdot \frac{d}{dx} \left( (x + 1)^{-3} \right) \][/tex]
[tex]\[ y''' = 2 \cdot (-3) \cdot (x + 1)^{-4} \][/tex]
[tex]\[ y''' = -\frac{6}{(x + 1)^4} \][/tex]
From the above calculations, we observe a pattern in the derivatives. Specifically, each derivative alternates in sign and has the general form:
[tex]\[ y^{(n)} = \frac{(-1)^n \cdot n!}{(x + 1)^{n + 1}} \][/tex]
where \( n! \) (n factorial) represents the product of all positive integers up to \( n \), and \( (x + 1)^{n + 1} \) is the term in the denominator raised to the power \( n + 1 \).
Therefore, the formula for the \( n \)th derivative \( y^{(n)} \) of the function \( y = \frac{1}{x + 1} \) is:
[tex]\[ y^{(n)} = \frac{(-1)^n \cdot n!}{(x + 1)^{n + 1}} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.