Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the formula for the \( n \)th derivative \( y^{(n)} \) of the function \( y = \frac{1}{x + 1} \), we can follow a pattern by calculating the first few derivatives and identifying a general form.
Given:
[tex]\[ y = \frac{1}{x + 1} \][/tex]
Let's calculate the first few derivatives:
1. First derivative \( y' \):
[tex]\[ y' = \frac{d}{dx} \left( \frac{1}{x + 1} \right) \][/tex]
Using the chain rule, we get:
[tex]\[ y' = -\frac{1}{(x + 1)^2} \][/tex]
2. Second derivative \( y'' \):
[tex]\[ y'' = \frac{d}{dx} \left( -\frac{1}{(x + 1)^2} \right) \][/tex]
Using the chain rule again, we get:
[tex]\[ y'' = -\frac{d}{dx} \left( (x + 1)^{-2} \right) \][/tex]
[tex]\[ y'' = -(-2) \cdot (x + 1)^{-3} \][/tex]
[tex]\[ y'' = \frac{2}{(x + 1)^3} \][/tex]
3. Third derivative \( y''' \):
[tex]\[ y''' = \frac{d}{dx} \left( \frac{2}{(x + 1)^3} \right) \][/tex]
Using the chain rule:
[tex]\[ y''' = 2 \cdot \frac{d}{dx} \left( (x + 1)^{-3} \right) \][/tex]
[tex]\[ y''' = 2 \cdot (-3) \cdot (x + 1)^{-4} \][/tex]
[tex]\[ y''' = -\frac{6}{(x + 1)^4} \][/tex]
From the above calculations, we observe a pattern in the derivatives. Specifically, each derivative alternates in sign and has the general form:
[tex]\[ y^{(n)} = \frac{(-1)^n \cdot n!}{(x + 1)^{n + 1}} \][/tex]
where \( n! \) (n factorial) represents the product of all positive integers up to \( n \), and \( (x + 1)^{n + 1} \) is the term in the denominator raised to the power \( n + 1 \).
Therefore, the formula for the \( n \)th derivative \( y^{(n)} \) of the function \( y = \frac{1}{x + 1} \) is:
[tex]\[ y^{(n)} = \frac{(-1)^n \cdot n!}{(x + 1)^{n + 1}} \][/tex]
Given:
[tex]\[ y = \frac{1}{x + 1} \][/tex]
Let's calculate the first few derivatives:
1. First derivative \( y' \):
[tex]\[ y' = \frac{d}{dx} \left( \frac{1}{x + 1} \right) \][/tex]
Using the chain rule, we get:
[tex]\[ y' = -\frac{1}{(x + 1)^2} \][/tex]
2. Second derivative \( y'' \):
[tex]\[ y'' = \frac{d}{dx} \left( -\frac{1}{(x + 1)^2} \right) \][/tex]
Using the chain rule again, we get:
[tex]\[ y'' = -\frac{d}{dx} \left( (x + 1)^{-2} \right) \][/tex]
[tex]\[ y'' = -(-2) \cdot (x + 1)^{-3} \][/tex]
[tex]\[ y'' = \frac{2}{(x + 1)^3} \][/tex]
3. Third derivative \( y''' \):
[tex]\[ y''' = \frac{d}{dx} \left( \frac{2}{(x + 1)^3} \right) \][/tex]
Using the chain rule:
[tex]\[ y''' = 2 \cdot \frac{d}{dx} \left( (x + 1)^{-3} \right) \][/tex]
[tex]\[ y''' = 2 \cdot (-3) \cdot (x + 1)^{-4} \][/tex]
[tex]\[ y''' = -\frac{6}{(x + 1)^4} \][/tex]
From the above calculations, we observe a pattern in the derivatives. Specifically, each derivative alternates in sign and has the general form:
[tex]\[ y^{(n)} = \frac{(-1)^n \cdot n!}{(x + 1)^{n + 1}} \][/tex]
where \( n! \) (n factorial) represents the product of all positive integers up to \( n \), and \( (x + 1)^{n + 1} \) is the term in the denominator raised to the power \( n + 1 \).
Therefore, the formula for the \( n \)th derivative \( y^{(n)} \) of the function \( y = \frac{1}{x + 1} \) is:
[tex]\[ y^{(n)} = \frac{(-1)^n \cdot n!}{(x + 1)^{n + 1}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.