Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the equation of the line that is perpendicular to a given line and passes through a specific point, we can follow these steps:
1. Identify the slope of the given line:
The equation of the given line is \( y + 3 = -4(x + 4) \). We can rewrite this in slope-intercept form ( \( y = mx + b \) ) to easily identify the slope \( m \).
Let's do that by isolating \( y \):
[tex]\[ y + 3 = -4(x + 4) \][/tex]
[tex]\[ y + 3 = -4x - 16 \][/tex]
[tex]\[ y = -4x - 16 - 3 \][/tex]
[tex]\[ y = -4x - 19 \][/tex]
Thus, the slope \( m \) of the given line is \( -4 \).
2. Determine the slope of the perpendicular line:
The slope of a line that is perpendicular to another line is the negative reciprocal of the slope of the original line. The negative reciprocal of \( -4 \) is:
[tex]\[ \frac{1}{-(-4)} = \frac{1}{4} \][/tex]
So, the slope of the perpendicular line is \( \frac{1}{4} \).
3. Use the point-slope form to write the equation of the perpendicular line:
The point-slope form of a line is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where \( m \) is the slope of the line and \( (x_1, y_1) \) is a point on the line.
We are given the point \( (-4, -3) \) and the slope \( \frac{1}{4} \). Substituting these values into the point-slope form, we get:
[tex]\[ y - (-3) = \frac{1}{4}(x - (-4)) \][/tex]
Simplifying the expression:
[tex]\[ y + 3 = \frac{1}{4}(x + 4) \][/tex]
Therefore, the equation of the line that is perpendicular to the given line and passes through the point [tex]\((-4, -3)\)[/tex] is [tex]\( y + 3 = \frac{1}{4}(x + 4) \)[/tex].
1. Identify the slope of the given line:
The equation of the given line is \( y + 3 = -4(x + 4) \). We can rewrite this in slope-intercept form ( \( y = mx + b \) ) to easily identify the slope \( m \).
Let's do that by isolating \( y \):
[tex]\[ y + 3 = -4(x + 4) \][/tex]
[tex]\[ y + 3 = -4x - 16 \][/tex]
[tex]\[ y = -4x - 16 - 3 \][/tex]
[tex]\[ y = -4x - 19 \][/tex]
Thus, the slope \( m \) of the given line is \( -4 \).
2. Determine the slope of the perpendicular line:
The slope of a line that is perpendicular to another line is the negative reciprocal of the slope of the original line. The negative reciprocal of \( -4 \) is:
[tex]\[ \frac{1}{-(-4)} = \frac{1}{4} \][/tex]
So, the slope of the perpendicular line is \( \frac{1}{4} \).
3. Use the point-slope form to write the equation of the perpendicular line:
The point-slope form of a line is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where \( m \) is the slope of the line and \( (x_1, y_1) \) is a point on the line.
We are given the point \( (-4, -3) \) and the slope \( \frac{1}{4} \). Substituting these values into the point-slope form, we get:
[tex]\[ y - (-3) = \frac{1}{4}(x - (-4)) \][/tex]
Simplifying the expression:
[tex]\[ y + 3 = \frac{1}{4}(x + 4) \][/tex]
Therefore, the equation of the line that is perpendicular to the given line and passes through the point [tex]\((-4, -3)\)[/tex] is [tex]\( y + 3 = \frac{1}{4}(x + 4) \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.