Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Complete the steps to derive the cofunction identity.

[tex]\[
\begin{aligned}
\sin \left(\frac{\pi}{2} - x\right) &= \cos(x) \\
&= \cos(x)
\end{aligned}
\][/tex]


Sagot :

Sure! Let's go through the steps to derive the cofunction identity \(\sin \left(\frac{\pi}{2} - x \right) = \cos(x)\).

### Step-by-Step Derivation

1. Starting Expression:
[tex]\[ \sin \left( \frac{\pi}{2} - x \right) \][/tex]

2. Use the angle addition formula for sine:
[tex]\[ \sin(A - B) = \sin A \cos B - \cos A \sin B \][/tex]

Applying this formula where \(A = \frac{\pi}{2}\) and \(B = x\), we get:
[tex]\[ \sin \left( \frac{\pi}{2} - x \right) = \sin \left( \frac{\pi}{2} \right) \cos(x) - \cos \left( \frac{\pi}{2} \right) \sin(x) \][/tex]

3. Evaluate \(\sin \left( \frac{\pi}{2} \right)\) and \(\cos \left( \frac{\pi}{2} \right)\):

From the unit circle or standard trigonometric values:
[tex]\[ \sin \left( \frac{\pi}{2} \right) = 1 \][/tex]
[tex]\[ \cos \left( \frac{\pi}{2} \right) = 0 \][/tex]

4. Substitute these values back into the expression:
[tex]\[ \sin \left( \frac{\pi}{2} - x \right) = 1 \cdot \cos(x) - 0 \cdot \sin(x) \][/tex]

5. Simplify the expression:
[tex]\[ \sin \left( \frac{\pi}{2} - x \right) = \cos(x) \][/tex]

Thus, we have derived the cofunction identity:
[tex]\[ \sin \left( \frac{\pi}{2} - x \right) = \cos(x) \][/tex]

This completes the derivation of the cofunction identity.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.