At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's work through this step-by-step to determine the \( p+q \)-th derivative of the function \( y = x^p (1 + x)^q \).
First, let's define the given functions:
[tex]\[ u = x^p \][/tex]
[tex]\[ v = (1 + x)^q \][/tex]
We will use the formula for the \( n \)-th derivative of the product of \( u \) and \( v \):
[tex]\[ y^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(n-k)} v^{(k)} \][/tex]
Here, we are interested in \( y^{(p+q)} \), so \( n = p + q \).
### Step-by-Step Calculation
1. Determine \( u \) and its derivatives:
[tex]\[ u = x^p \][/tex]
[tex]\[ u^{(n)} = \frac{d^n}{dx^n} (x^p) \][/tex]
For \( u = x^p \), the \( n \)-th derivative \( u^{(n)} \) is zero for \( n > p \). For \( n \leq p \):
[tex]\[ u^{(n)} = \frac{d^n}{dx^n} (x^p) = \frac{p!}{(p-n)!} x^{p-n} \][/tex]
2. Determine \( v \) and its derivatives:
[tex]\[ v = (1 + x)^q \][/tex]
[tex]\[ v^{(n)} = \frac{d^n}{dx^n} ((1 + x)^q) \][/tex]
For \( v = (1 + x)^q \), the \( n \)-th derivative \( v^{(n)} \) is given by:
[tex]\[ v^{(n)} = \frac{q!}{(q-n)!} (1+x)^{q-n} \][/tex]
3. Apply the product rule formula:
[tex]\[ y^{(p+q)} = \sum_{k=0}^{p+q} \binom{p+q}{k} u^{(p+q-k)} v^{(k)} \][/tex]
Now, let’s break down the terms for \( u^{(p+q-k)} \) and \( v^{(k)} \):
- For \( k > p \), \( u^{(p+q-k)} = 0 \) because the derivative \( u^{(n)} \) is zero when \( n > p \).
- For \( k \leq p \), \( u^{(p+q-k)} = \frac{p!}{(p - (p+q-k))!} x^{p - (p+q-k)} = \frac{p!}{(q-k)!} x^{p+q-k} \).
So, when we sum up these terms:
[tex]\[ y^{(p+q)} = \sum_{k=0}^{p} \binom{p+q}{k} \frac{p!}{(q-k)!} x^{p+q-k} \frac{q!}{(q-k)!} (1 + x)^{q-k} \][/tex]
Combining constants and simplifying:
[tex]\[ y^{(p+q)} = \sum_{k=0}^{p} \binom{p+q}{k} \frac{p! q!}{(q-k)!(q-k)!} x^{p+q-k} (1 + x)^{q-k} \][/tex]
The general form can be complex to express in a simplified term without specific values for \( p \) and \( q \). However, this approach gives us the detailed step-by-step method used to calculate higher-order derivatives.
### Summary
To calculate \( y^{(p+q)} \) for \( y = x^p (1 + x)^q \), we use:
[tex]\[ y^{(p+q)} = \sum_{k=0}^{p} \binom{p+q}{k} \frac{p! q!}{(q-k)!(q-k)!} x^{p+q-k} (1 + x)^{q-k} \][/tex]
This involves calculating the derivatives of the individual functions and then using the product rule to sum up the appropriate terms.
First, let's define the given functions:
[tex]\[ u = x^p \][/tex]
[tex]\[ v = (1 + x)^q \][/tex]
We will use the formula for the \( n \)-th derivative of the product of \( u \) and \( v \):
[tex]\[ y^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(n-k)} v^{(k)} \][/tex]
Here, we are interested in \( y^{(p+q)} \), so \( n = p + q \).
### Step-by-Step Calculation
1. Determine \( u \) and its derivatives:
[tex]\[ u = x^p \][/tex]
[tex]\[ u^{(n)} = \frac{d^n}{dx^n} (x^p) \][/tex]
For \( u = x^p \), the \( n \)-th derivative \( u^{(n)} \) is zero for \( n > p \). For \( n \leq p \):
[tex]\[ u^{(n)} = \frac{d^n}{dx^n} (x^p) = \frac{p!}{(p-n)!} x^{p-n} \][/tex]
2. Determine \( v \) and its derivatives:
[tex]\[ v = (1 + x)^q \][/tex]
[tex]\[ v^{(n)} = \frac{d^n}{dx^n} ((1 + x)^q) \][/tex]
For \( v = (1 + x)^q \), the \( n \)-th derivative \( v^{(n)} \) is given by:
[tex]\[ v^{(n)} = \frac{q!}{(q-n)!} (1+x)^{q-n} \][/tex]
3. Apply the product rule formula:
[tex]\[ y^{(p+q)} = \sum_{k=0}^{p+q} \binom{p+q}{k} u^{(p+q-k)} v^{(k)} \][/tex]
Now, let’s break down the terms for \( u^{(p+q-k)} \) and \( v^{(k)} \):
- For \( k > p \), \( u^{(p+q-k)} = 0 \) because the derivative \( u^{(n)} \) is zero when \( n > p \).
- For \( k \leq p \), \( u^{(p+q-k)} = \frac{p!}{(p - (p+q-k))!} x^{p - (p+q-k)} = \frac{p!}{(q-k)!} x^{p+q-k} \).
So, when we sum up these terms:
[tex]\[ y^{(p+q)} = \sum_{k=0}^{p} \binom{p+q}{k} \frac{p!}{(q-k)!} x^{p+q-k} \frac{q!}{(q-k)!} (1 + x)^{q-k} \][/tex]
Combining constants and simplifying:
[tex]\[ y^{(p+q)} = \sum_{k=0}^{p} \binom{p+q}{k} \frac{p! q!}{(q-k)!(q-k)!} x^{p+q-k} (1 + x)^{q-k} \][/tex]
The general form can be complex to express in a simplified term without specific values for \( p \) and \( q \). However, this approach gives us the detailed step-by-step method used to calculate higher-order derivatives.
### Summary
To calculate \( y^{(p+q)} \) for \( y = x^p (1 + x)^q \), we use:
[tex]\[ y^{(p+q)} = \sum_{k=0}^{p} \binom{p+q}{k} \frac{p! q!}{(q-k)!(q-k)!} x^{p+q-k} (1 + x)^{q-k} \][/tex]
This involves calculating the derivatives of the individual functions and then using the product rule to sum up the appropriate terms.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.