Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's work through this step-by-step to determine the \( p+q \)-th derivative of the function \( y = x^p (1 + x)^q \).
First, let's define the given functions:
[tex]\[ u = x^p \][/tex]
[tex]\[ v = (1 + x)^q \][/tex]
We will use the formula for the \( n \)-th derivative of the product of \( u \) and \( v \):
[tex]\[ y^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(n-k)} v^{(k)} \][/tex]
Here, we are interested in \( y^{(p+q)} \), so \( n = p + q \).
### Step-by-Step Calculation
1. Determine \( u \) and its derivatives:
[tex]\[ u = x^p \][/tex]
[tex]\[ u^{(n)} = \frac{d^n}{dx^n} (x^p) \][/tex]
For \( u = x^p \), the \( n \)-th derivative \( u^{(n)} \) is zero for \( n > p \). For \( n \leq p \):
[tex]\[ u^{(n)} = \frac{d^n}{dx^n} (x^p) = \frac{p!}{(p-n)!} x^{p-n} \][/tex]
2. Determine \( v \) and its derivatives:
[tex]\[ v = (1 + x)^q \][/tex]
[tex]\[ v^{(n)} = \frac{d^n}{dx^n} ((1 + x)^q) \][/tex]
For \( v = (1 + x)^q \), the \( n \)-th derivative \( v^{(n)} \) is given by:
[tex]\[ v^{(n)} = \frac{q!}{(q-n)!} (1+x)^{q-n} \][/tex]
3. Apply the product rule formula:
[tex]\[ y^{(p+q)} = \sum_{k=0}^{p+q} \binom{p+q}{k} u^{(p+q-k)} v^{(k)} \][/tex]
Now, let’s break down the terms for \( u^{(p+q-k)} \) and \( v^{(k)} \):
- For \( k > p \), \( u^{(p+q-k)} = 0 \) because the derivative \( u^{(n)} \) is zero when \( n > p \).
- For \( k \leq p \), \( u^{(p+q-k)} = \frac{p!}{(p - (p+q-k))!} x^{p - (p+q-k)} = \frac{p!}{(q-k)!} x^{p+q-k} \).
So, when we sum up these terms:
[tex]\[ y^{(p+q)} = \sum_{k=0}^{p} \binom{p+q}{k} \frac{p!}{(q-k)!} x^{p+q-k} \frac{q!}{(q-k)!} (1 + x)^{q-k} \][/tex]
Combining constants and simplifying:
[tex]\[ y^{(p+q)} = \sum_{k=0}^{p} \binom{p+q}{k} \frac{p! q!}{(q-k)!(q-k)!} x^{p+q-k} (1 + x)^{q-k} \][/tex]
The general form can be complex to express in a simplified term without specific values for \( p \) and \( q \). However, this approach gives us the detailed step-by-step method used to calculate higher-order derivatives.
### Summary
To calculate \( y^{(p+q)} \) for \( y = x^p (1 + x)^q \), we use:
[tex]\[ y^{(p+q)} = \sum_{k=0}^{p} \binom{p+q}{k} \frac{p! q!}{(q-k)!(q-k)!} x^{p+q-k} (1 + x)^{q-k} \][/tex]
This involves calculating the derivatives of the individual functions and then using the product rule to sum up the appropriate terms.
First, let's define the given functions:
[tex]\[ u = x^p \][/tex]
[tex]\[ v = (1 + x)^q \][/tex]
We will use the formula for the \( n \)-th derivative of the product of \( u \) and \( v \):
[tex]\[ y^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(n-k)} v^{(k)} \][/tex]
Here, we are interested in \( y^{(p+q)} \), so \( n = p + q \).
### Step-by-Step Calculation
1. Determine \( u \) and its derivatives:
[tex]\[ u = x^p \][/tex]
[tex]\[ u^{(n)} = \frac{d^n}{dx^n} (x^p) \][/tex]
For \( u = x^p \), the \( n \)-th derivative \( u^{(n)} \) is zero for \( n > p \). For \( n \leq p \):
[tex]\[ u^{(n)} = \frac{d^n}{dx^n} (x^p) = \frac{p!}{(p-n)!} x^{p-n} \][/tex]
2. Determine \( v \) and its derivatives:
[tex]\[ v = (1 + x)^q \][/tex]
[tex]\[ v^{(n)} = \frac{d^n}{dx^n} ((1 + x)^q) \][/tex]
For \( v = (1 + x)^q \), the \( n \)-th derivative \( v^{(n)} \) is given by:
[tex]\[ v^{(n)} = \frac{q!}{(q-n)!} (1+x)^{q-n} \][/tex]
3. Apply the product rule formula:
[tex]\[ y^{(p+q)} = \sum_{k=0}^{p+q} \binom{p+q}{k} u^{(p+q-k)} v^{(k)} \][/tex]
Now, let’s break down the terms for \( u^{(p+q-k)} \) and \( v^{(k)} \):
- For \( k > p \), \( u^{(p+q-k)} = 0 \) because the derivative \( u^{(n)} \) is zero when \( n > p \).
- For \( k \leq p \), \( u^{(p+q-k)} = \frac{p!}{(p - (p+q-k))!} x^{p - (p+q-k)} = \frac{p!}{(q-k)!} x^{p+q-k} \).
So, when we sum up these terms:
[tex]\[ y^{(p+q)} = \sum_{k=0}^{p} \binom{p+q}{k} \frac{p!}{(q-k)!} x^{p+q-k} \frac{q!}{(q-k)!} (1 + x)^{q-k} \][/tex]
Combining constants and simplifying:
[tex]\[ y^{(p+q)} = \sum_{k=0}^{p} \binom{p+q}{k} \frac{p! q!}{(q-k)!(q-k)!} x^{p+q-k} (1 + x)^{q-k} \][/tex]
The general form can be complex to express in a simplified term without specific values for \( p \) and \( q \). However, this approach gives us the detailed step-by-step method used to calculate higher-order derivatives.
### Summary
To calculate \( y^{(p+q)} \) for \( y = x^p (1 + x)^q \), we use:
[tex]\[ y^{(p+q)} = \sum_{k=0}^{p} \binom{p+q}{k} \frac{p! q!}{(q-k)!(q-k)!} x^{p+q-k} (1 + x)^{q-k} \][/tex]
This involves calculating the derivatives of the individual functions and then using the product rule to sum up the appropriate terms.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.