Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let’s solve the problem of finding the diameter of the circular window step-by-step:
1. Given Information:
- The horizontal shelf length is \(8 \text{ ft}\).
- The vertical brace length is \(2 \text{ ft}\).
2. Understanding the Geometry:
- The diameter of the circle coincides with the length of the horizontal shelf.
- The vertical brace acts as a radius and forms a right-angle triangle with half of the horizontal shelf.
3. Forming the Right Triangle:
- Half the shelf length is \(\frac{8}{2} = 4 \text{ ft}\).
- The brace length is \(2 \text{ ft}\).
4. Applying the Pythagorean Theorem:
- In the right triangle, the total radius of the circle formed is the hypotenuse.
- Let’s denote the radius by \(r\).
- The Pythagorean theorem states \(r^2 = (\text{half shelf length})^2 + (\text{brace length})^2\).
5. Substitute the Known Values:
- \(r^2 = 4^2 + 2^2\).
- \(r^2 = 16 + 4\).
- \(r^2 = 20\).
6. Solving for the Radius \(r\):
- \(r = \sqrt{20}\).
- \(r \approx 4.472 \text{ ft}\).
7. Calculating the Diameter:
- The diameter is twice the radius.
- Diameter \( = 2 \times r \).
- Diameter \( = 2 \times 4.472 \).
- Diameter \( \approx 8.944 \text{ ft}\).
Thus, the diameter of the window is approximately [tex]\(8.944 \text{ feet}\)[/tex].
1. Given Information:
- The horizontal shelf length is \(8 \text{ ft}\).
- The vertical brace length is \(2 \text{ ft}\).
2. Understanding the Geometry:
- The diameter of the circle coincides with the length of the horizontal shelf.
- The vertical brace acts as a radius and forms a right-angle triangle with half of the horizontal shelf.
3. Forming the Right Triangle:
- Half the shelf length is \(\frac{8}{2} = 4 \text{ ft}\).
- The brace length is \(2 \text{ ft}\).
4. Applying the Pythagorean Theorem:
- In the right triangle, the total radius of the circle formed is the hypotenuse.
- Let’s denote the radius by \(r\).
- The Pythagorean theorem states \(r^2 = (\text{half shelf length})^2 + (\text{brace length})^2\).
5. Substitute the Known Values:
- \(r^2 = 4^2 + 2^2\).
- \(r^2 = 16 + 4\).
- \(r^2 = 20\).
6. Solving for the Radius \(r\):
- \(r = \sqrt{20}\).
- \(r \approx 4.472 \text{ ft}\).
7. Calculating the Diameter:
- The diameter is twice the radius.
- Diameter \( = 2 \times r \).
- Diameter \( = 2 \times 4.472 \).
- Diameter \( \approx 8.944 \text{ ft}\).
Thus, the diameter of the window is approximately [tex]\(8.944 \text{ feet}\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.