Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the chemical formula for the compound formed between magnesium (Mg) and nitrogen (N) using Lewis theory, let's go through the following steps:
1. Understanding Valence Electrons and Ion Formation:
- Magnesium (Mg) is in Group 2 of the periodic table and has 2 valence electrons. Magnesium tends to lose these 2 valence electrons to achieve a stable electron configuration, forming a \( \text{Mg}^{2+} \) ion.
- Nitrogen (N) is in Group 15 of the periodic table and has 5 valence electrons. Nitrogen tends to gain 3 more electrons to achieve a stable electron configuration, forming a \( \text{N}^{3-} \) ion.
2. Balancing the Charges:
- When magnesium loses 2 electrons, it forms \( \text{Mg}^{2+} \), having a +2 charge.
- When nitrogen gains 3 electrons, it forms \( \text{N}^{3-} \), having a -3 charge.
3. Combining Ions to Balance Charges:
- To combine these ions to form a neutral compound, we need to balance the total positive and total negative charges.
- The least common multiple (LCM) of the charges +2 (from \( \text{Mg}^{2+} \)) and -3 (from \( \text{N}^{3-} \)) is 6.
4. Determining the Number of Ions Needed:
- To get a total positive charge of +6, we need 3 \( \text{Mg}^{2+} \) ions because \( 3 \times +2 = +6 \).
- To get a total negative charge of -6, we need 2 \( \text{N}^{3-} \) ions because \( 2 \times -3 = -6 \).
5. Writing the Chemical Formula:
- By combining 3 \( \text{Mg}^{2+} \) ions and 2 \( \text{N}^{3-} \) ions, the charges balance out to form a neutral compound.
- The chemical formula reflecting this combination is \( \text{Mg}_3\text{N}_2 \).
Based on this step-by-step analysis, the correct chemical formula for the compound formed between magnesium and nitrogen is \( \text{Mg}_3\text{N}_2 \).
Therefore, the answer is:
[tex]\( \boxed{\text{Mg}_3\text{N}_2} \)[/tex]
1. Understanding Valence Electrons and Ion Formation:
- Magnesium (Mg) is in Group 2 of the periodic table and has 2 valence electrons. Magnesium tends to lose these 2 valence electrons to achieve a stable electron configuration, forming a \( \text{Mg}^{2+} \) ion.
- Nitrogen (N) is in Group 15 of the periodic table and has 5 valence electrons. Nitrogen tends to gain 3 more electrons to achieve a stable electron configuration, forming a \( \text{N}^{3-} \) ion.
2. Balancing the Charges:
- When magnesium loses 2 electrons, it forms \( \text{Mg}^{2+} \), having a +2 charge.
- When nitrogen gains 3 electrons, it forms \( \text{N}^{3-} \), having a -3 charge.
3. Combining Ions to Balance Charges:
- To combine these ions to form a neutral compound, we need to balance the total positive and total negative charges.
- The least common multiple (LCM) of the charges +2 (from \( \text{Mg}^{2+} \)) and -3 (from \( \text{N}^{3-} \)) is 6.
4. Determining the Number of Ions Needed:
- To get a total positive charge of +6, we need 3 \( \text{Mg}^{2+} \) ions because \( 3 \times +2 = +6 \).
- To get a total negative charge of -6, we need 2 \( \text{N}^{3-} \) ions because \( 2 \times -3 = -6 \).
5. Writing the Chemical Formula:
- By combining 3 \( \text{Mg}^{2+} \) ions and 2 \( \text{N}^{3-} \) ions, the charges balance out to form a neutral compound.
- The chemical formula reflecting this combination is \( \text{Mg}_3\text{N}_2 \).
Based on this step-by-step analysis, the correct chemical formula for the compound formed between magnesium and nitrogen is \( \text{Mg}_3\text{N}_2 \).
Therefore, the answer is:
[tex]\( \boxed{\text{Mg}_3\text{N}_2} \)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.