Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the molar mass of \( NH_3 \), follow these steps:
1. Identify the elements and their atomic masses:
- Hydrogen (\(H\)): \(1.01 \, \text{g/mol}\)
- Nitrogen (\(N\)): \(14.01 \, \text{g/mol}\)
2. Identify the number of each type of atom in the molecule:
- In one molecule of \( NH_3 \), there is:
- 1 Nitrogen atom
- 3 Hydrogen atoms
3. Calculate the total mass contributed by each element:
- For Hydrogen: Multiply the atomic mass of hydrogen by the number of hydrogen atoms in the molecule.
[tex]\[ \text{Total mass of Hydrogen} = 3 \times 1.01 \, \text{g/mol} = 3.03 \, \text{g/mol} \][/tex]
- For Nitrogen: Multiply the atomic mass of nitrogen by the number of nitrogen atoms in the molecule.
[tex]\[ \text{Total mass of Nitrogen} = 1 \times 14.01 \, \text{g/mol} = 14.01 \, \text{g/mol} \][/tex]
4. Add the masses contributed by each element to find the total molar mass of \( NH_3 \):
[tex]\[ \text{Molar mass of } NH_3 = \text{Total mass of Hydrogen} + \text{Total mass of Nitrogen} \][/tex]
[tex]\[ \text{Molar mass of } NH_3 = 3.03 \, \text{g/mol} + 14.01 \, \text{g/mol} \][/tex]
[tex]\[ \text{Molar mass of } NH_3 = 17.04 \, \text{g/mol} \][/tex]
Therefore, the molar mass of [tex]\( NH_3 \)[/tex] is [tex]\( 17.04 \, \text{g/mol} \)[/tex].
1. Identify the elements and their atomic masses:
- Hydrogen (\(H\)): \(1.01 \, \text{g/mol}\)
- Nitrogen (\(N\)): \(14.01 \, \text{g/mol}\)
2. Identify the number of each type of atom in the molecule:
- In one molecule of \( NH_3 \), there is:
- 1 Nitrogen atom
- 3 Hydrogen atoms
3. Calculate the total mass contributed by each element:
- For Hydrogen: Multiply the atomic mass of hydrogen by the number of hydrogen atoms in the molecule.
[tex]\[ \text{Total mass of Hydrogen} = 3 \times 1.01 \, \text{g/mol} = 3.03 \, \text{g/mol} \][/tex]
- For Nitrogen: Multiply the atomic mass of nitrogen by the number of nitrogen atoms in the molecule.
[tex]\[ \text{Total mass of Nitrogen} = 1 \times 14.01 \, \text{g/mol} = 14.01 \, \text{g/mol} \][/tex]
4. Add the masses contributed by each element to find the total molar mass of \( NH_3 \):
[tex]\[ \text{Molar mass of } NH_3 = \text{Total mass of Hydrogen} + \text{Total mass of Nitrogen} \][/tex]
[tex]\[ \text{Molar mass of } NH_3 = 3.03 \, \text{g/mol} + 14.01 \, \text{g/mol} \][/tex]
[tex]\[ \text{Molar mass of } NH_3 = 17.04 \, \text{g/mol} \][/tex]
Therefore, the molar mass of [tex]\( NH_3 \)[/tex] is [tex]\( 17.04 \, \text{g/mol} \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.