Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the expression \((2 - 5i)(p + q)(i)\) given that \( p = 2 \) and \( q = 5i \), follow these steps:
1. Substitute the values for \( p \) and \( q \):
Given:
[tex]\[ p = 2 \][/tex]
[tex]\[ q = 5i \][/tex]
2. Form the second term:
Substitute \( p \) and \( q \) into \( p + q \):
[tex]\[ p + q = 2 + 5i \][/tex]
3. Multiply the first term by the second term:
The expression becomes:
[tex]\[ (2 - 5i)(2 + 5i) \][/tex]
To expand the product, use the distributive property (FOIL method):
[tex]\[ (2 - 5i)(2 + 5i) = 2 \cdot 2 + 2 \cdot 5i - 5i \cdot 2 - 5i \cdot 5i \][/tex]
[tex]\[ = 4 + 10i - 10i - 25i^2 \][/tex]
Note that \( i^2 = -1 \):
[tex]\[ = 4 + 10i - 10i - 25(-1) \][/tex]
[tex]\[ = 4 + 25 \][/tex]
[tex]\[ = 29 \][/tex]
4. Multiply the result by \( i \):
Now, take the result \( 29 \) and multiply it by \( i \):
[tex]\[ 29 \cdot i = 29i \][/tex]
Therefore, the evaluated expression \((2 - 5i)(2 + 5i)(i)\) is:
[tex]\[ \boxed{29i} \][/tex]
This matches the true result described in the problem.
1. Substitute the values for \( p \) and \( q \):
Given:
[tex]\[ p = 2 \][/tex]
[tex]\[ q = 5i \][/tex]
2. Form the second term:
Substitute \( p \) and \( q \) into \( p + q \):
[tex]\[ p + q = 2 + 5i \][/tex]
3. Multiply the first term by the second term:
The expression becomes:
[tex]\[ (2 - 5i)(2 + 5i) \][/tex]
To expand the product, use the distributive property (FOIL method):
[tex]\[ (2 - 5i)(2 + 5i) = 2 \cdot 2 + 2 \cdot 5i - 5i \cdot 2 - 5i \cdot 5i \][/tex]
[tex]\[ = 4 + 10i - 10i - 25i^2 \][/tex]
Note that \( i^2 = -1 \):
[tex]\[ = 4 + 10i - 10i - 25(-1) \][/tex]
[tex]\[ = 4 + 25 \][/tex]
[tex]\[ = 29 \][/tex]
4. Multiply the result by \( i \):
Now, take the result \( 29 \) and multiply it by \( i \):
[tex]\[ 29 \cdot i = 29i \][/tex]
Therefore, the evaluated expression \((2 - 5i)(2 + 5i)(i)\) is:
[tex]\[ \boxed{29i} \][/tex]
This matches the true result described in the problem.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.