At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To form a polynomial \( f(x) \) with real coefficients, given the degree and zeros, we need to consider the following steps:
1. Write down the given zeros: The zeros provided are \( -5 - 2i \) and \( -3 \) with a multiplicity of 2.
2. Include the complex conjugate: Since the polynomial must have real coefficients, the complex zeros must occur in conjugate pairs. Thus, if \( -5 - 2i \) is a zero, its complex conjugate \( -5 + 2i \) must also be a zero.
3. List all zeros: The zeros of the polynomial will be \( -5 - 2i, -5 + 2i, -3, -3 \).
4. Construct factors from zeros: Each zero \( \alpha \) will correspond to a factor \( (x - \alpha) \). Thus, the factors will be:
- For \( -5 - 2i \): \( (x - (-5 - 2i)) = (x + 5 + 2i) \)
- For \( -5 + 2i \): \( (x - (-5 + 2i)) = (x + 5 - 2i) \)
- For \( -3 \) (with multiplicity 2): \( (x - (-3))^2 = (x + 3)^2 \)
5. Form the polynomial: Multiply the factors to get the polynomial:
[tex]\[ f(x) = (x + 5 + 2i)(x + 5 - 2i)(x + 3)^2 \][/tex]
6. Multiply conjugate pairs: The product of the conjugate pairs will be a quadratic polynomial with real coefficients.
[tex]\[ (x + 5 + 2i)(x + 5 - 2i) = (x + 5)^2 - (2i)^2 = (x + 5)^2 - 4(-1) = (x + 5)^2 + 4 = (x + 5)^2 + 4 \][/tex]
Expand:
[tex]\[ (x + 5)^2 + 4 = x^2 + 10x + 25 + 4 = x^2 + 10x + 29 \][/tex]
7. Combine with the quadratic term from the repeated zero \( (-3) \):
[tex]\[ f(x) = (x^2 + 10x + 29)(x + 3)^2 \][/tex]
Expand \( (x + 3)^2 \) first:
[tex]\[ (x + 3)^2 = x^2 + 6x + 9 \][/tex]
8. Expand the entire polynomial by multiplying \( (x^2 + 10x + 29) \) with \( (x^2 + 6x + 9) \):
[tex]\[ f(x) = (x^2 + 10x + 29)(x^2 + 6x + 9) \][/tex]
Use distributive property to expand (multiply each term in the first polynomial by each term in the second polynomial):
[tex]\[ \begin{align*} f(x) &= (x^2)(x^2) + (x^2)(6x) + (x^2)(9) \\ &+ (10x)(x^2) + (10x)(6x) + (10x)(9) \\ &+ (29)(x^2) + (29)(6x) + (29)(9) \\ &= x^4 + 6x^3 + 9x^2 \\ &+ 10x^3 + 60x^2 + 90x \\ &+ 29x^2 + 174x + 261 \end{align*} \][/tex]
9. Combine like terms:
[tex]\[ f(x) = x^4 + (6x^3 + 10x^3) + (9x^2 + 60x^2 + 29x^2) + (90x + 174x) + 261 \][/tex]
Simplify:
[tex]\[ f(x) = x^4 + 16x^3 + 98x^2 + 264x + 261 \][/tex]
Thus, the polynomial \( f(x) \) with real coefficients, having degree 4, and zeros \( -5 - 2i, -5 + 2i, -3, -3 \), is:
[tex]\[ f(x) = x^4 + 16x^3 + 98x^2 + 264x + 261 \][/tex]
1. Write down the given zeros: The zeros provided are \( -5 - 2i \) and \( -3 \) with a multiplicity of 2.
2. Include the complex conjugate: Since the polynomial must have real coefficients, the complex zeros must occur in conjugate pairs. Thus, if \( -5 - 2i \) is a zero, its complex conjugate \( -5 + 2i \) must also be a zero.
3. List all zeros: The zeros of the polynomial will be \( -5 - 2i, -5 + 2i, -3, -3 \).
4. Construct factors from zeros: Each zero \( \alpha \) will correspond to a factor \( (x - \alpha) \). Thus, the factors will be:
- For \( -5 - 2i \): \( (x - (-5 - 2i)) = (x + 5 + 2i) \)
- For \( -5 + 2i \): \( (x - (-5 + 2i)) = (x + 5 - 2i) \)
- For \( -3 \) (with multiplicity 2): \( (x - (-3))^2 = (x + 3)^2 \)
5. Form the polynomial: Multiply the factors to get the polynomial:
[tex]\[ f(x) = (x + 5 + 2i)(x + 5 - 2i)(x + 3)^2 \][/tex]
6. Multiply conjugate pairs: The product of the conjugate pairs will be a quadratic polynomial with real coefficients.
[tex]\[ (x + 5 + 2i)(x + 5 - 2i) = (x + 5)^2 - (2i)^2 = (x + 5)^2 - 4(-1) = (x + 5)^2 + 4 = (x + 5)^2 + 4 \][/tex]
Expand:
[tex]\[ (x + 5)^2 + 4 = x^2 + 10x + 25 + 4 = x^2 + 10x + 29 \][/tex]
7. Combine with the quadratic term from the repeated zero \( (-3) \):
[tex]\[ f(x) = (x^2 + 10x + 29)(x + 3)^2 \][/tex]
Expand \( (x + 3)^2 \) first:
[tex]\[ (x + 3)^2 = x^2 + 6x + 9 \][/tex]
8. Expand the entire polynomial by multiplying \( (x^2 + 10x + 29) \) with \( (x^2 + 6x + 9) \):
[tex]\[ f(x) = (x^2 + 10x + 29)(x^2 + 6x + 9) \][/tex]
Use distributive property to expand (multiply each term in the first polynomial by each term in the second polynomial):
[tex]\[ \begin{align*} f(x) &= (x^2)(x^2) + (x^2)(6x) + (x^2)(9) \\ &+ (10x)(x^2) + (10x)(6x) + (10x)(9) \\ &+ (29)(x^2) + (29)(6x) + (29)(9) \\ &= x^4 + 6x^3 + 9x^2 \\ &+ 10x^3 + 60x^2 + 90x \\ &+ 29x^2 + 174x + 261 \end{align*} \][/tex]
9. Combine like terms:
[tex]\[ f(x) = x^4 + (6x^3 + 10x^3) + (9x^2 + 60x^2 + 29x^2) + (90x + 174x) + 261 \][/tex]
Simplify:
[tex]\[ f(x) = x^4 + 16x^3 + 98x^2 + 264x + 261 \][/tex]
Thus, the polynomial \( f(x) \) with real coefficients, having degree 4, and zeros \( -5 - 2i, -5 + 2i, -3, -3 \), is:
[tex]\[ f(x) = x^4 + 16x^3 + 98x^2 + 264x + 261 \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.