Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To form a polynomial \( f(x) \) with real coefficients, given the degree and zeros, we need to consider the following steps:
1. Write down the given zeros: The zeros provided are \( -5 - 2i \) and \( -3 \) with a multiplicity of 2.
2. Include the complex conjugate: Since the polynomial must have real coefficients, the complex zeros must occur in conjugate pairs. Thus, if \( -5 - 2i \) is a zero, its complex conjugate \( -5 + 2i \) must also be a zero.
3. List all zeros: The zeros of the polynomial will be \( -5 - 2i, -5 + 2i, -3, -3 \).
4. Construct factors from zeros: Each zero \( \alpha \) will correspond to a factor \( (x - \alpha) \). Thus, the factors will be:
- For \( -5 - 2i \): \( (x - (-5 - 2i)) = (x + 5 + 2i) \)
- For \( -5 + 2i \): \( (x - (-5 + 2i)) = (x + 5 - 2i) \)
- For \( -3 \) (with multiplicity 2): \( (x - (-3))^2 = (x + 3)^2 \)
5. Form the polynomial: Multiply the factors to get the polynomial:
[tex]\[ f(x) = (x + 5 + 2i)(x + 5 - 2i)(x + 3)^2 \][/tex]
6. Multiply conjugate pairs: The product of the conjugate pairs will be a quadratic polynomial with real coefficients.
[tex]\[ (x + 5 + 2i)(x + 5 - 2i) = (x + 5)^2 - (2i)^2 = (x + 5)^2 - 4(-1) = (x + 5)^2 + 4 = (x + 5)^2 + 4 \][/tex]
Expand:
[tex]\[ (x + 5)^2 + 4 = x^2 + 10x + 25 + 4 = x^2 + 10x + 29 \][/tex]
7. Combine with the quadratic term from the repeated zero \( (-3) \):
[tex]\[ f(x) = (x^2 + 10x + 29)(x + 3)^2 \][/tex]
Expand \( (x + 3)^2 \) first:
[tex]\[ (x + 3)^2 = x^2 + 6x + 9 \][/tex]
8. Expand the entire polynomial by multiplying \( (x^2 + 10x + 29) \) with \( (x^2 + 6x + 9) \):
[tex]\[ f(x) = (x^2 + 10x + 29)(x^2 + 6x + 9) \][/tex]
Use distributive property to expand (multiply each term in the first polynomial by each term in the second polynomial):
[tex]\[ \begin{align*} f(x) &= (x^2)(x^2) + (x^2)(6x) + (x^2)(9) \\ &+ (10x)(x^2) + (10x)(6x) + (10x)(9) \\ &+ (29)(x^2) + (29)(6x) + (29)(9) \\ &= x^4 + 6x^3 + 9x^2 \\ &+ 10x^3 + 60x^2 + 90x \\ &+ 29x^2 + 174x + 261 \end{align*} \][/tex]
9. Combine like terms:
[tex]\[ f(x) = x^4 + (6x^3 + 10x^3) + (9x^2 + 60x^2 + 29x^2) + (90x + 174x) + 261 \][/tex]
Simplify:
[tex]\[ f(x) = x^4 + 16x^3 + 98x^2 + 264x + 261 \][/tex]
Thus, the polynomial \( f(x) \) with real coefficients, having degree 4, and zeros \( -5 - 2i, -5 + 2i, -3, -3 \), is:
[tex]\[ f(x) = x^4 + 16x^3 + 98x^2 + 264x + 261 \][/tex]
1. Write down the given zeros: The zeros provided are \( -5 - 2i \) and \( -3 \) with a multiplicity of 2.
2. Include the complex conjugate: Since the polynomial must have real coefficients, the complex zeros must occur in conjugate pairs. Thus, if \( -5 - 2i \) is a zero, its complex conjugate \( -5 + 2i \) must also be a zero.
3. List all zeros: The zeros of the polynomial will be \( -5 - 2i, -5 + 2i, -3, -3 \).
4. Construct factors from zeros: Each zero \( \alpha \) will correspond to a factor \( (x - \alpha) \). Thus, the factors will be:
- For \( -5 - 2i \): \( (x - (-5 - 2i)) = (x + 5 + 2i) \)
- For \( -5 + 2i \): \( (x - (-5 + 2i)) = (x + 5 - 2i) \)
- For \( -3 \) (with multiplicity 2): \( (x - (-3))^2 = (x + 3)^2 \)
5. Form the polynomial: Multiply the factors to get the polynomial:
[tex]\[ f(x) = (x + 5 + 2i)(x + 5 - 2i)(x + 3)^2 \][/tex]
6. Multiply conjugate pairs: The product of the conjugate pairs will be a quadratic polynomial with real coefficients.
[tex]\[ (x + 5 + 2i)(x + 5 - 2i) = (x + 5)^2 - (2i)^2 = (x + 5)^2 - 4(-1) = (x + 5)^2 + 4 = (x + 5)^2 + 4 \][/tex]
Expand:
[tex]\[ (x + 5)^2 + 4 = x^2 + 10x + 25 + 4 = x^2 + 10x + 29 \][/tex]
7. Combine with the quadratic term from the repeated zero \( (-3) \):
[tex]\[ f(x) = (x^2 + 10x + 29)(x + 3)^2 \][/tex]
Expand \( (x + 3)^2 \) first:
[tex]\[ (x + 3)^2 = x^2 + 6x + 9 \][/tex]
8. Expand the entire polynomial by multiplying \( (x^2 + 10x + 29) \) with \( (x^2 + 6x + 9) \):
[tex]\[ f(x) = (x^2 + 10x + 29)(x^2 + 6x + 9) \][/tex]
Use distributive property to expand (multiply each term in the first polynomial by each term in the second polynomial):
[tex]\[ \begin{align*} f(x) &= (x^2)(x^2) + (x^2)(6x) + (x^2)(9) \\ &+ (10x)(x^2) + (10x)(6x) + (10x)(9) \\ &+ (29)(x^2) + (29)(6x) + (29)(9) \\ &= x^4 + 6x^3 + 9x^2 \\ &+ 10x^3 + 60x^2 + 90x \\ &+ 29x^2 + 174x + 261 \end{align*} \][/tex]
9. Combine like terms:
[tex]\[ f(x) = x^4 + (6x^3 + 10x^3) + (9x^2 + 60x^2 + 29x^2) + (90x + 174x) + 261 \][/tex]
Simplify:
[tex]\[ f(x) = x^4 + 16x^3 + 98x^2 + 264x + 261 \][/tex]
Thus, the polynomial \( f(x) \) with real coefficients, having degree 4, and zeros \( -5 - 2i, -5 + 2i, -3, -3 \), is:
[tex]\[ f(x) = x^4 + 16x^3 + 98x^2 + 264x + 261 \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.