Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the x-intercepts of the function \( f(x) = 4x^4 + 12x^3 - 40x^2 \), we need to solve for \( x \) when \( f(x) = 0 \).
1. Set the function equal to zero:
[tex]\[ 4x^4 + 12x^3 - 40x^2 = 0 \][/tex]
2. Factor out the greatest common factor (GCF):
Notice that \( 4x^2 \) is a common factor in each term of the polynomial. Factor out \( 4x^2 \):
[tex]\[ 4x^2(x^2 + 3x - 10) = 0 \][/tex]
3. Solve for \( x \) in \( 4x^2 = 0 \):
[tex]\[ 4x^2 = 0 \implies x^2 = 0 \implies x = 0 \][/tex]
Thus, one x-intercept is \( (0,0) \).
4. Solve the quadratic equation \( x^2 + 3x - 10 = 0 \):
Use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1 \), \( b = 3 \), and \( c = -10 \):
[tex]\[ x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot (-10)}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-3 \pm \sqrt{9 + 40}}{2} \][/tex]
[tex]\[ x = \frac{-3 \pm \sqrt{49}}{2} \][/tex]
[tex]\[ x = \frac{-3 \pm 7}{2} \][/tex]
This results in two solutions:
[tex]\[ x = \frac{-3 + 7}{2} = \frac{4}{2} = 2 \][/tex]
[tex]\[ x = \frac{-3 - 7}{2} = \frac{-10}{2} = -5 \][/tex]
Thus, the other two x-intercepts are \( (2,0) \) and \((-5,0) \).
5. Summarize the x-intercepts:
The x-intercepts of the function \( f(x) = 4x^4 + 12x^3 - 40x^2 \) are:
[tex]\[ (0,0), \, (2,0), \, (-5,0) \][/tex]
Therefore, the correct choice is:
[tex]\((0,0), (2,0), (-5,0)\)[/tex].
1. Set the function equal to zero:
[tex]\[ 4x^4 + 12x^3 - 40x^2 = 0 \][/tex]
2. Factor out the greatest common factor (GCF):
Notice that \( 4x^2 \) is a common factor in each term of the polynomial. Factor out \( 4x^2 \):
[tex]\[ 4x^2(x^2 + 3x - 10) = 0 \][/tex]
3. Solve for \( x \) in \( 4x^2 = 0 \):
[tex]\[ 4x^2 = 0 \implies x^2 = 0 \implies x = 0 \][/tex]
Thus, one x-intercept is \( (0,0) \).
4. Solve the quadratic equation \( x^2 + 3x - 10 = 0 \):
Use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1 \), \( b = 3 \), and \( c = -10 \):
[tex]\[ x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot (-10)}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-3 \pm \sqrt{9 + 40}}{2} \][/tex]
[tex]\[ x = \frac{-3 \pm \sqrt{49}}{2} \][/tex]
[tex]\[ x = \frac{-3 \pm 7}{2} \][/tex]
This results in two solutions:
[tex]\[ x = \frac{-3 + 7}{2} = \frac{4}{2} = 2 \][/tex]
[tex]\[ x = \frac{-3 - 7}{2} = \frac{-10}{2} = -5 \][/tex]
Thus, the other two x-intercepts are \( (2,0) \) and \((-5,0) \).
5. Summarize the x-intercepts:
The x-intercepts of the function \( f(x) = 4x^4 + 12x^3 - 40x^2 \) are:
[tex]\[ (0,0), \, (2,0), \, (-5,0) \][/tex]
Therefore, the correct choice is:
[tex]\((0,0), (2,0), (-5,0)\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.