Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Determine the volume (in L) of 6.70 g of He gas at 25.0 °C and 740. mmHg. Be sure your answer has the correct number of significant figures.

(Note: Reference the Fundamental Constants and Conversion Factors for Non-SI Units table for additional information.)


Sagot :

To determine the volume of 6.70 grams of Helium (He) gas at 25.0 °C and a pressure of 740.0 mmHg, we can use the ideal gas law equation, \( PV = nRT \).

Let's break this down step-by-step:

### Step 1: Convert Pressure to Atmospheres
Pressure is given in mmHg, so we need to convert it to atmospheres (atm). The conversion factor is:
[tex]\[ 1 \, \text{atm} = 760 \, \text{mmHg} \][/tex]

Thus, the pressure in atmospheres is:
[tex]\[ \text{Pressure} = \frac{740.0 \, \text{mmHg}}{760.0 \, \text{mmHg/atm}} \approx 0.9737 \, \text{atm} \][/tex]

### Step 2: Convert Temperature to Kelvin
The temperature is given in degrees Celsius, so we need to convert it to Kelvin. The conversion equation is:
[tex]\[ T(\text{K}) = T(^{\circ}\text{C}) + 273.15 \][/tex]

So the temperature in Kelvin is:
[tex]\[ \text{Temperature} = 25.0 + 273.15 = 298.15 \, \text{K} \][/tex]

### Step 3: Calculate the Number of Moles of Helium
To find the number of moles (\( n \)), we use the molar mass of Helium. The molar mass (\( M \)) of Helium (He) is 4.002602 g/mol.

The number of moles is:
[tex]\[ n = \frac{\text{mass}}{\text{molar mass}} \][/tex]
[tex]\[ n = \frac{6.70 \, \text{g}}{4.002602 \, \text{g/mol}} \approx 1.674 \, \text{mol} \][/tex]

### Step 4: Use the Ideal Gas Law to Find the Volume
We have:
[tex]\[ P = 0.9737 \, \text{atm} \][/tex]
[tex]\[ n = 1.674 \, \text{mol} \][/tex]
[tex]\[ R = 0.0821 \, \text{L} \cdot \text{atm}/(\text{K} \cdot \text{mol}) \][/tex]
[tex]\[ T = 298.15 \, \text{K} \][/tex]

The ideal gas law is \( PV = nRT \), and solving for \( V \) (volume) gives:
[tex]\[ V = \frac{nRT}{P} \][/tex]

Substituting the known values:
[tex]\[ V = \frac{1.674 \, \text{mol} \times 0.0821 \, \text{L·atm/(K·mol)} \times 298.15 \, \text{K}}{0.9737 \, \text{atm}} \][/tex]

### Step 5: Calculate the Volume
[tex]\[ V \approx \frac{1.674 \times 0.0821 \times 298.15}{0.9737} \][/tex]
[tex]\[ V \approx 42.08 \, \text{L} \][/tex]

Given the significant figures based on the provided values (3 significant figures), the volume of the Helium gas is:
[tex]\[ \boxed{42.1 \, \text{L}} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.