Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the problem of finding the probability that a customer ordered a large drink given that they ordered a hot drink, we need to use the concept of conditional probability.
Conditional probability is given by the formula:
[tex]\[ P(A \mid B) = \frac{P(A \cap B)}{P(B)} \][/tex]
where:
- \(P(A \mid B)\) is the probability of event \(A\) occurring given that \(B\) has occurred.
- \(P(A \cap B)\) is the probability of both events \(A\) and \(B\) occurring.
- \(P(B)\) is the probability of event \(B\) occurring.
In this particular problem:
- Event \(A\) is the event that a customer orders a large drink.
- Event \(B\) is the event that a customer orders a hot drink.
From the given data:
- The number of customers who ordered large hot drinks (\(A \cap B\)) is 22.
- The total number of customers who ordered hot drinks (\(B\)) is 75.
Thus, the conditional probability \(P(\text{Large} \mid \text{Hot})\) can be calculated as follows:
[tex]\[ P(\text{Large} \mid \text{Hot}) = \frac{22}{75} \][/tex]
To find this probability, divide 22 by 75:
[tex]\[ \frac{22}{75} \approx 0.29333333333333333 \][/tex]
We are asked to round this probability to the nearest hundredth. Therefore, 0.29333333333333333 rounded to the nearest hundredth is 0.29.
Thus, the probability that a customer ordered a large drink given that they ordered a hot drink, rounded to the nearest hundredth, is:
[tex]\[ \boxed{0.29} \][/tex]
Conditional probability is given by the formula:
[tex]\[ P(A \mid B) = \frac{P(A \cap B)}{P(B)} \][/tex]
where:
- \(P(A \mid B)\) is the probability of event \(A\) occurring given that \(B\) has occurred.
- \(P(A \cap B)\) is the probability of both events \(A\) and \(B\) occurring.
- \(P(B)\) is the probability of event \(B\) occurring.
In this particular problem:
- Event \(A\) is the event that a customer orders a large drink.
- Event \(B\) is the event that a customer orders a hot drink.
From the given data:
- The number of customers who ordered large hot drinks (\(A \cap B\)) is 22.
- The total number of customers who ordered hot drinks (\(B\)) is 75.
Thus, the conditional probability \(P(\text{Large} \mid \text{Hot})\) can be calculated as follows:
[tex]\[ P(\text{Large} \mid \text{Hot}) = \frac{22}{75} \][/tex]
To find this probability, divide 22 by 75:
[tex]\[ \frac{22}{75} \approx 0.29333333333333333 \][/tex]
We are asked to round this probability to the nearest hundredth. Therefore, 0.29333333333333333 rounded to the nearest hundredth is 0.29.
Thus, the probability that a customer ordered a large drink given that they ordered a hot drink, rounded to the nearest hundredth, is:
[tex]\[ \boxed{0.29} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.