Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the number of moles of gas in a human breath that occupies 56.0 L at a pressure of 753 mmHg and a temperature of 37 °C, we will use the Ideal Gas Law:
[tex]\[ PV = nRT \][/tex]
where:
- \( P \) is the pressure of the gas
- \( V \) is the volume of the gas
- \( n \) is the number of moles of the gas
- \( R \) is the ideal gas constant
- \( T \) is the temperature of the gas in Kelvin
Given the values:
- Volume (\( V \)) = 56.0 L
- Pressure (\( P \)) = 753 mmHg
- Temperature (\( T \)) = 37 °C
First, we need to convert the pressure from mmHg to atmospheres (atm):
[tex]\[ 1 \text{ atm} = 760 \text{ mmHg} \][/tex]
[tex]\[ P = \frac{753 \text{ mmHg}}{760 \text{ mmHg/atm}} = 0.990789 \text{ atm} \][/tex]
Next, we convert the temperature from Celsius to Kelvin:
[tex]\[ T(\text{K}) = T(\text{°C}) + 273.15 \][/tex]
[tex]\[ T = 37 + 273.15 = 310.15 \text{ K} \][/tex]
The ideal gas constant \( R \) in units of L·atm/(K·mol) is:
[tex]\[ R = 0.0821 \text{ L·atm/(K·mol)} \][/tex]
Now we can rearrange the Ideal Gas Law to solve for the number of moles (\( n \)):
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substitute in the known values:
[tex]\[ n = \frac{(0.990789 \text{ atm}) \times (56.0 \text{ L})}{(0.0821 \text{ L·atm/(K·mol)}) \times (310.15 \text{ K})} \][/tex]
[tex]\[ n \approx 2.179 \][/tex]
The number of moles of gas contained in the breath, to the correct number of significant figures (three, based on the given data), is:
[tex]\[ n = 2.18 \text{ moles} \][/tex]
So, there are approximately 2.18 moles of gas in the human breath.
[tex]\[ PV = nRT \][/tex]
where:
- \( P \) is the pressure of the gas
- \( V \) is the volume of the gas
- \( n \) is the number of moles of the gas
- \( R \) is the ideal gas constant
- \( T \) is the temperature of the gas in Kelvin
Given the values:
- Volume (\( V \)) = 56.0 L
- Pressure (\( P \)) = 753 mmHg
- Temperature (\( T \)) = 37 °C
First, we need to convert the pressure from mmHg to atmospheres (atm):
[tex]\[ 1 \text{ atm} = 760 \text{ mmHg} \][/tex]
[tex]\[ P = \frac{753 \text{ mmHg}}{760 \text{ mmHg/atm}} = 0.990789 \text{ atm} \][/tex]
Next, we convert the temperature from Celsius to Kelvin:
[tex]\[ T(\text{K}) = T(\text{°C}) + 273.15 \][/tex]
[tex]\[ T = 37 + 273.15 = 310.15 \text{ K} \][/tex]
The ideal gas constant \( R \) in units of L·atm/(K·mol) is:
[tex]\[ R = 0.0821 \text{ L·atm/(K·mol)} \][/tex]
Now we can rearrange the Ideal Gas Law to solve for the number of moles (\( n \)):
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substitute in the known values:
[tex]\[ n = \frac{(0.990789 \text{ atm}) \times (56.0 \text{ L})}{(0.0821 \text{ L·atm/(K·mol)}) \times (310.15 \text{ K})} \][/tex]
[tex]\[ n \approx 2.179 \][/tex]
The number of moles of gas contained in the breath, to the correct number of significant figures (three, based on the given data), is:
[tex]\[ n = 2.18 \text{ moles} \][/tex]
So, there are approximately 2.18 moles of gas in the human breath.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.