Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the integral \(\int \frac{1}{\sqrt{2x}} \, dx\), follow these steps:
1. Rewrite the Integral:
[tex]\[ \int \frac{1}{\sqrt{2x}} \, dx \][/tex]
2. Simplify the Integrand:
Notice that \(\frac{1}{\sqrt{2x}}\) can be rewritten using properties of radicals.
[tex]\[ \frac{1}{\sqrt{2x}} = \frac{1}{\sqrt{2} \cdot \sqrt{x}} = \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{x}} \][/tex]
3. Factor out the Constant:
Factor out the \(\frac{1}{\sqrt{2}}\), which is a constant, from the integral.
[tex]\[ \int \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{x}} \, dx = \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{x}} \, dx \][/tex]
4. Recognize the Standard Integral:
The integral \(\int \frac{1}{\sqrt{x}} \, dx\) is a standard integral that equals \(2\sqrt{x}\). Therefore,
[tex]\[ \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{x}} \, dx = \frac{1}{\sqrt{2}} \cdot 2\sqrt{x} = \frac{2\sqrt{x}}{\sqrt{2}} \][/tex]
5. Simplify the Expression:
Simplify the fraction \(\frac{2\sqrt{x}}{\sqrt{2}}\):
[tex]\[ \frac{2\sqrt{x}}{\sqrt{2}} = \frac{2}{\sqrt{2}} \cdot \sqrt{x} = \sqrt{2} \cdot \sqrt{x} = \sqrt{2x} \][/tex]
6. Include the Constant of Integration:
Don't forget the constant of integration \(C\), as it is an indefinite integral.
Combining all the steps together, you get:
[tex]\[ \int \frac{1}{\sqrt{2x}} \, dx = \sqrt{2x} + C \][/tex]
Therefore, the solution to the integral \(\int \frac{1}{\sqrt{2x}} \, dx\) is:
[tex]\[ \sqrt{2x} + C \][/tex]
1. Rewrite the Integral:
[tex]\[ \int \frac{1}{\sqrt{2x}} \, dx \][/tex]
2. Simplify the Integrand:
Notice that \(\frac{1}{\sqrt{2x}}\) can be rewritten using properties of radicals.
[tex]\[ \frac{1}{\sqrt{2x}} = \frac{1}{\sqrt{2} \cdot \sqrt{x}} = \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{x}} \][/tex]
3. Factor out the Constant:
Factor out the \(\frac{1}{\sqrt{2}}\), which is a constant, from the integral.
[tex]\[ \int \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{x}} \, dx = \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{x}} \, dx \][/tex]
4. Recognize the Standard Integral:
The integral \(\int \frac{1}{\sqrt{x}} \, dx\) is a standard integral that equals \(2\sqrt{x}\). Therefore,
[tex]\[ \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{x}} \, dx = \frac{1}{\sqrt{2}} \cdot 2\sqrt{x} = \frac{2\sqrt{x}}{\sqrt{2}} \][/tex]
5. Simplify the Expression:
Simplify the fraction \(\frac{2\sqrt{x}}{\sqrt{2}}\):
[tex]\[ \frac{2\sqrt{x}}{\sqrt{2}} = \frac{2}{\sqrt{2}} \cdot \sqrt{x} = \sqrt{2} \cdot \sqrt{x} = \sqrt{2x} \][/tex]
6. Include the Constant of Integration:
Don't forget the constant of integration \(C\), as it is an indefinite integral.
Combining all the steps together, you get:
[tex]\[ \int \frac{1}{\sqrt{2x}} \, dx = \sqrt{2x} + C \][/tex]
Therefore, the solution to the integral \(\int \frac{1}{\sqrt{2x}} \, dx\) is:
[tex]\[ \sqrt{2x} + C \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.