At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which of the given sets cannot represent the three sides of a triangle, we need to use the triangle inequality theorem. The triangle inequality theorem states that for three sides to form a triangle, the sum of any two sides must be greater than the third side.
Let's analyze each set individually:
1. Set {10, 21, 29}
- Check the sum of two sides against the third:
- \(10 + 21 > 29\) → \(31 > 29\) (True)
- \(10 + 29 > 21\) → \(39 > 21\) (True)
- \(21 + 29 > 10\) → \(50 > 10\) (True)
- All conditions are satisfied, so these sides can form a triangle.
2. Set {9, 20, 28}
- Check the sum of two sides against the third:
- \(9 + 20 > 28\) → \(29 > 28\) (True)
- \(9 + 28 > 20\) → \(37 > 20\) (True)
- \(20 + 28 > 9\) → \(48 > 9\) (True)
- All conditions are satisfied, so these sides can form a triangle.
3. Set {4, 17, 22}
- Check the sum of two sides against the third:
- \(4 + 17 > 22\) → \(21 > 22\) (False)
- \(4 + 22 > 17\) → \(26 > 17\) (True)
- \(17 + 22 > 4\) → \(39 > 4\) (True)
- One condition (\(4 + 17 > 22\)) is not satisfied; thus, these sides cannot form a triangle.
4. Set {11, 20, 29}
- Check the sum of two sides against the third:
- \(11 + 20 > 29\) → \(31 > 29\) (True)
- \(11 + 29 > 20\) → \(40 > 20\) (True)
- \(20 + 29 > 11\) → \(49 > 11\) (True)
- All conditions are satisfied, so these sides can form a triangle.
Hence, the set that cannot represent the three sides of a triangle is:
{4, 17, 22}.
Let's analyze each set individually:
1. Set {10, 21, 29}
- Check the sum of two sides against the third:
- \(10 + 21 > 29\) → \(31 > 29\) (True)
- \(10 + 29 > 21\) → \(39 > 21\) (True)
- \(21 + 29 > 10\) → \(50 > 10\) (True)
- All conditions are satisfied, so these sides can form a triangle.
2. Set {9, 20, 28}
- Check the sum of two sides against the third:
- \(9 + 20 > 28\) → \(29 > 28\) (True)
- \(9 + 28 > 20\) → \(37 > 20\) (True)
- \(20 + 28 > 9\) → \(48 > 9\) (True)
- All conditions are satisfied, so these sides can form a triangle.
3. Set {4, 17, 22}
- Check the sum of two sides against the third:
- \(4 + 17 > 22\) → \(21 > 22\) (False)
- \(4 + 22 > 17\) → \(26 > 17\) (True)
- \(17 + 22 > 4\) → \(39 > 4\) (True)
- One condition (\(4 + 17 > 22\)) is not satisfied; thus, these sides cannot form a triangle.
4. Set {11, 20, 29}
- Check the sum of two sides against the third:
- \(11 + 20 > 29\) → \(31 > 29\) (True)
- \(11 + 29 > 20\) → \(40 > 20\) (True)
- \(20 + 29 > 11\) → \(49 > 11\) (True)
- All conditions are satisfied, so these sides can form a triangle.
Hence, the set that cannot represent the three sides of a triangle is:
{4, 17, 22}.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.