At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which of the given sets cannot represent the three sides of a triangle, we need to use the triangle inequality theorem. The triangle inequality theorem states that for three sides to form a triangle, the sum of any two sides must be greater than the third side.
Let's analyze each set individually:
1. Set {10, 21, 29}
- Check the sum of two sides against the third:
- \(10 + 21 > 29\) → \(31 > 29\) (True)
- \(10 + 29 > 21\) → \(39 > 21\) (True)
- \(21 + 29 > 10\) → \(50 > 10\) (True)
- All conditions are satisfied, so these sides can form a triangle.
2. Set {9, 20, 28}
- Check the sum of two sides against the third:
- \(9 + 20 > 28\) → \(29 > 28\) (True)
- \(9 + 28 > 20\) → \(37 > 20\) (True)
- \(20 + 28 > 9\) → \(48 > 9\) (True)
- All conditions are satisfied, so these sides can form a triangle.
3. Set {4, 17, 22}
- Check the sum of two sides against the third:
- \(4 + 17 > 22\) → \(21 > 22\) (False)
- \(4 + 22 > 17\) → \(26 > 17\) (True)
- \(17 + 22 > 4\) → \(39 > 4\) (True)
- One condition (\(4 + 17 > 22\)) is not satisfied; thus, these sides cannot form a triangle.
4. Set {11, 20, 29}
- Check the sum of two sides against the third:
- \(11 + 20 > 29\) → \(31 > 29\) (True)
- \(11 + 29 > 20\) → \(40 > 20\) (True)
- \(20 + 29 > 11\) → \(49 > 11\) (True)
- All conditions are satisfied, so these sides can form a triangle.
Hence, the set that cannot represent the three sides of a triangle is:
{4, 17, 22}.
Let's analyze each set individually:
1. Set {10, 21, 29}
- Check the sum of two sides against the third:
- \(10 + 21 > 29\) → \(31 > 29\) (True)
- \(10 + 29 > 21\) → \(39 > 21\) (True)
- \(21 + 29 > 10\) → \(50 > 10\) (True)
- All conditions are satisfied, so these sides can form a triangle.
2. Set {9, 20, 28}
- Check the sum of two sides against the third:
- \(9 + 20 > 28\) → \(29 > 28\) (True)
- \(9 + 28 > 20\) → \(37 > 20\) (True)
- \(20 + 28 > 9\) → \(48 > 9\) (True)
- All conditions are satisfied, so these sides can form a triangle.
3. Set {4, 17, 22}
- Check the sum of two sides against the third:
- \(4 + 17 > 22\) → \(21 > 22\) (False)
- \(4 + 22 > 17\) → \(26 > 17\) (True)
- \(17 + 22 > 4\) → \(39 > 4\) (True)
- One condition (\(4 + 17 > 22\)) is not satisfied; thus, these sides cannot form a triangle.
4. Set {11, 20, 29}
- Check the sum of two sides against the third:
- \(11 + 20 > 29\) → \(31 > 29\) (True)
- \(11 + 29 > 20\) → \(40 > 20\) (True)
- \(20 + 29 > 11\) → \(49 > 11\) (True)
- All conditions are satisfied, so these sides can form a triangle.
Hence, the set that cannot represent the three sides of a triangle is:
{4, 17, 22}.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.