At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which of the given sets cannot represent the three sides of a triangle, we need to use the triangle inequality theorem. The triangle inequality theorem states that for three sides to form a triangle, the sum of any two sides must be greater than the third side.
Let's analyze each set individually:
1. Set {10, 21, 29}
- Check the sum of two sides against the third:
- \(10 + 21 > 29\) → \(31 > 29\) (True)
- \(10 + 29 > 21\) → \(39 > 21\) (True)
- \(21 + 29 > 10\) → \(50 > 10\) (True)
- All conditions are satisfied, so these sides can form a triangle.
2. Set {9, 20, 28}
- Check the sum of two sides against the third:
- \(9 + 20 > 28\) → \(29 > 28\) (True)
- \(9 + 28 > 20\) → \(37 > 20\) (True)
- \(20 + 28 > 9\) → \(48 > 9\) (True)
- All conditions are satisfied, so these sides can form a triangle.
3. Set {4, 17, 22}
- Check the sum of two sides against the third:
- \(4 + 17 > 22\) → \(21 > 22\) (False)
- \(4 + 22 > 17\) → \(26 > 17\) (True)
- \(17 + 22 > 4\) → \(39 > 4\) (True)
- One condition (\(4 + 17 > 22\)) is not satisfied; thus, these sides cannot form a triangle.
4. Set {11, 20, 29}
- Check the sum of two sides against the third:
- \(11 + 20 > 29\) → \(31 > 29\) (True)
- \(11 + 29 > 20\) → \(40 > 20\) (True)
- \(20 + 29 > 11\) → \(49 > 11\) (True)
- All conditions are satisfied, so these sides can form a triangle.
Hence, the set that cannot represent the three sides of a triangle is:
{4, 17, 22}.
Let's analyze each set individually:
1. Set {10, 21, 29}
- Check the sum of two sides against the third:
- \(10 + 21 > 29\) → \(31 > 29\) (True)
- \(10 + 29 > 21\) → \(39 > 21\) (True)
- \(21 + 29 > 10\) → \(50 > 10\) (True)
- All conditions are satisfied, so these sides can form a triangle.
2. Set {9, 20, 28}
- Check the sum of two sides against the third:
- \(9 + 20 > 28\) → \(29 > 28\) (True)
- \(9 + 28 > 20\) → \(37 > 20\) (True)
- \(20 + 28 > 9\) → \(48 > 9\) (True)
- All conditions are satisfied, so these sides can form a triangle.
3. Set {4, 17, 22}
- Check the sum of two sides against the third:
- \(4 + 17 > 22\) → \(21 > 22\) (False)
- \(4 + 22 > 17\) → \(26 > 17\) (True)
- \(17 + 22 > 4\) → \(39 > 4\) (True)
- One condition (\(4 + 17 > 22\)) is not satisfied; thus, these sides cannot form a triangle.
4. Set {11, 20, 29}
- Check the sum of two sides against the third:
- \(11 + 20 > 29\) → \(31 > 29\) (True)
- \(11 + 29 > 20\) → \(40 > 20\) (True)
- \(20 + 29 > 11\) → \(49 > 11\) (True)
- All conditions are satisfied, so these sides can form a triangle.
Hence, the set that cannot represent the three sides of a triangle is:
{4, 17, 22}.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.