Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve this problem, we need to find the probability of the complementary event given the probability of the event itself.
### Step-by-Step Solution:
1. Identify the probability of the event:
The probability of the event is given as \(\frac{3}{5}\).
2. Understand the concept of complementary events:
The sum of the probabilities of an event and its complementary event is always equal to 1. Mathematically, this is expressed as:
[tex]\[ P(\text{Event}) + P(\text{Complementary Event}) = 1 \][/tex]
3. Use the given probability to find the complementary probability:
Let \(P(\text{Event}) = \frac{3}{5}\). We need to find \(P(\text{Complementary Event})\).
The formula to find the probability of the complementary event is:
[tex]\[ P(\text{Complementary Event}) = 1 - P(\text{Event}) \][/tex]
4. Substitute the given probability:
[tex]\[ P(\text{Complementary Event}) = 1 - \frac{3}{5} \][/tex]
5. Perform the subtraction:
To subtract \(\frac{3}{5}\) from 1, we can convert 1 into a fraction with the same denominator:
[tex]\[ 1 = \frac{5}{5} \][/tex]
Then, subtract \(\frac{3}{5}\) from \(\frac{5}{5}\):
[tex]\[ \frac{5}{5} - \frac{3}{5} = \frac{2}{5} \][/tex]
6. Simplify the result:
The simplified result is already \(\frac{2}{5}\).
7. Convert the fraction to a decimal (optional):
Although not strictly necessary, converting the fraction \(\frac{2}{5}\) to a decimal can sometimes make the result clearer:
[tex]\[ \frac{2}{5} = 0.4 \][/tex]
Thus, the probability of the complementary event is [tex]\(\frac{2}{5}\)[/tex], which is equivalent to 0.4 in decimal form.
### Step-by-Step Solution:
1. Identify the probability of the event:
The probability of the event is given as \(\frac{3}{5}\).
2. Understand the concept of complementary events:
The sum of the probabilities of an event and its complementary event is always equal to 1. Mathematically, this is expressed as:
[tex]\[ P(\text{Event}) + P(\text{Complementary Event}) = 1 \][/tex]
3. Use the given probability to find the complementary probability:
Let \(P(\text{Event}) = \frac{3}{5}\). We need to find \(P(\text{Complementary Event})\).
The formula to find the probability of the complementary event is:
[tex]\[ P(\text{Complementary Event}) = 1 - P(\text{Event}) \][/tex]
4. Substitute the given probability:
[tex]\[ P(\text{Complementary Event}) = 1 - \frac{3}{5} \][/tex]
5. Perform the subtraction:
To subtract \(\frac{3}{5}\) from 1, we can convert 1 into a fraction with the same denominator:
[tex]\[ 1 = \frac{5}{5} \][/tex]
Then, subtract \(\frac{3}{5}\) from \(\frac{5}{5}\):
[tex]\[ \frac{5}{5} - \frac{3}{5} = \frac{2}{5} \][/tex]
6. Simplify the result:
The simplified result is already \(\frac{2}{5}\).
7. Convert the fraction to a decimal (optional):
Although not strictly necessary, converting the fraction \(\frac{2}{5}\) to a decimal can sometimes make the result clearer:
[tex]\[ \frac{2}{5} = 0.4 \][/tex]
Thus, the probability of the complementary event is [tex]\(\frac{2}{5}\)[/tex], which is equivalent to 0.4 in decimal form.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.