Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Find the slope of the line that passes through the points [tex](2, -5)[/tex] and [tex](7, 1)[/tex].

Step 1: Choose [tex](x_1, y_1)[/tex].
[tex]x_1 = 2, y_1 = -5[/tex]

Step 2: Calculate the slope using the formula:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

where [tex](x_2, y_2) = (7, 1)[/tex].


Sagot :

To find the slope of the line that passes through the points \((2, -5)\) and \((7, 1)\), we'll follow these steps:

Step 1: Choose \((x_1, y_1)\)
We can choose \((x_1, y_1) = (2, -5)\).

[tex]\[ x_1 = 2, \quad y_1 = -5 \][/tex]

Step 2: Choose \((x_2, y_2)\)
We can choose \((x_2, y_2) = (7, 1)\).

[tex]\[ x_2 = 7, \quad y_2 = 1 \][/tex]

Step 3: Apply the formula for the slope of a line
The slope \(m\) of a line that passes through points \((x_1, y_1)\) and \((x_2, y_2)\) is given by:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Step 4: Substitute the values into the formula

[tex]\[ m = \frac{1 - (-5)}{7 - 2} \][/tex]

Step 5: Simplify the expression

[tex]\[ m = \frac{1 + 5}{7 - 2} = \frac{6}{5} = 1.2 \][/tex]

So, the slope of the line that passes through the points [tex]\((2, -5)\)[/tex] and [tex]\((7, 1)\)[/tex] is 1.2.