Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's solve the problem step-by-step.
1. Identify the given values:
- The edge length of the square base of the pyramid is \(5 \, \text{cm}\).
- The height of the pyramid is \(7 \, \text{cm}\).
2. Calculate the area of the square base:
To find the area of the square base, we use the formula for the area of a square:
[tex]\[ \text{Base area} = \text{edge length}^2 \][/tex]
Substituting the given edge length:
[tex]\[ \text{Base area} = 5 \, \text{cm} \times 5 \, \text{cm} = 25 \, \text{cm}^2 \][/tex]
3. Calculate the volume of the pyramid:
The volume \(V\) of a pyramid is given by the formula:
[tex]\[ V = \frac{1}{3} \times \text{Base area} \times \text{height} \][/tex]
Using the values we have:
[tex]\[ V = \frac{1}{3} \times 25 \, \text{cm}^2 \times 7 \, \text{cm} = \frac{1}{3} \times 175 \, \text{cm}^3 = 58.\overline{3} \, \text{cm}^3 \][/tex]
4. Compare with the given multiple-choice options:
- \(11 \frac{2}{3} \, \text{cm}^3\)
- \(43 \frac{3}{4} \, \text{cm}^3\)
- \(58 \frac{1}{3} \, \text{cm}^3\)
- \(87 \frac{1}{2} \, \tex{Cl}^3\)
The calculated volume \(58.33333333333333 \, \text{cm}^3\) matches exactly with \(58 \frac{1}{3} \, \text{cm}^3\).
Therefore, the correct answer is:
[tex]\[ 58 \frac{1}{3} \, \text{cm}^3 \][/tex]
1. Identify the given values:
- The edge length of the square base of the pyramid is \(5 \, \text{cm}\).
- The height of the pyramid is \(7 \, \text{cm}\).
2. Calculate the area of the square base:
To find the area of the square base, we use the formula for the area of a square:
[tex]\[ \text{Base area} = \text{edge length}^2 \][/tex]
Substituting the given edge length:
[tex]\[ \text{Base area} = 5 \, \text{cm} \times 5 \, \text{cm} = 25 \, \text{cm}^2 \][/tex]
3. Calculate the volume of the pyramid:
The volume \(V\) of a pyramid is given by the formula:
[tex]\[ V = \frac{1}{3} \times \text{Base area} \times \text{height} \][/tex]
Using the values we have:
[tex]\[ V = \frac{1}{3} \times 25 \, \text{cm}^2 \times 7 \, \text{cm} = \frac{1}{3} \times 175 \, \text{cm}^3 = 58.\overline{3} \, \text{cm}^3 \][/tex]
4. Compare with the given multiple-choice options:
- \(11 \frac{2}{3} \, \text{cm}^3\)
- \(43 \frac{3}{4} \, \text{cm}^3\)
- \(58 \frac{1}{3} \, \text{cm}^3\)
- \(87 \frac{1}{2} \, \tex{Cl}^3\)
The calculated volume \(58.33333333333333 \, \text{cm}^3\) matches exactly with \(58 \frac{1}{3} \, \text{cm}^3\).
Therefore, the correct answer is:
[tex]\[ 58 \frac{1}{3} \, \text{cm}^3 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.
Why was America’s victory at Yorktown among the most significant battles of the American Revolution?