Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which of the given numbers are in the set \( A \), we first explicitly define the set \( A \). The set \( A \) consists of all positive odd integers less than 7.
We start by listing the positive integers less than 7: \( 1, 2, 3, 4, 5, 6 \). From these, we select only the odd integers: \( 1, 3, 5 \). Therefore, \( A = \{ 1, 3, 5 \} \).
Next, we check each of the given numbers to see if they belong to set \( A \):
1. Checking \(-1\):
\(-1\) is not a positive number, hence it is not in set \( A \).
2. Checking 0:
0 is not a positive number, so it is not in set \( A \).
3. Checking 1:
1 is a positive odd integer less than 7, so it is in set \( A \).
4. Checking 2:
2 is a positive integer but it is even, hence it is not in set \( A \).
5. Checking 5:
5 is a positive odd integer less than 7, so it is in set \( A \).
6. Checking 3:
3 is a positive odd integer less than 7, so it is in set \( A \).
Based on the checks we have performed, the numbers that are in set \( A \) are:
- 1
- 5
- 3
Therefore, from the given numbers, the ones that are in set [tex]\( A \)[/tex] are [tex]\( 1 \)[/tex], [tex]\( 5 \)[/tex], and [tex]\( 3 \)[/tex].
We start by listing the positive integers less than 7: \( 1, 2, 3, 4, 5, 6 \). From these, we select only the odd integers: \( 1, 3, 5 \). Therefore, \( A = \{ 1, 3, 5 \} \).
Next, we check each of the given numbers to see if they belong to set \( A \):
1. Checking \(-1\):
\(-1\) is not a positive number, hence it is not in set \( A \).
2. Checking 0:
0 is not a positive number, so it is not in set \( A \).
3. Checking 1:
1 is a positive odd integer less than 7, so it is in set \( A \).
4. Checking 2:
2 is a positive integer but it is even, hence it is not in set \( A \).
5. Checking 5:
5 is a positive odd integer less than 7, so it is in set \( A \).
6. Checking 3:
3 is a positive odd integer less than 7, so it is in set \( A \).
Based on the checks we have performed, the numbers that are in set \( A \) are:
- 1
- 5
- 3
Therefore, from the given numbers, the ones that are in set [tex]\( A \)[/tex] are [tex]\( 1 \)[/tex], [tex]\( 5 \)[/tex], and [tex]\( 3 \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.