Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

What is the value of [tex]$x[tex]$[/tex] in the following logarithmic function: [tex]$[/tex]\log_2(32) = x$[/tex]?

A. 6
B. 5
C. 4
D. 3

Sagot :

To find the value of \( x \) in the logarithmic equation \( \log_2(32) = x \), we can use the properties of logarithms and exponents.

1. Understanding the logarithmic equation:
[tex]\[ \log_2(32) = x \][/tex]
This equation means: "To what power must 2 be raised, to obtain 32?"

2. Rewriting the equation in exponential form:
[tex]\[ 2^x = 32 \][/tex]

3. Recognizing powers of 2:
To solve this, identify that \( 32 \) is a power of 2. Specifically,
[tex]\[ 32 = 2^5 \][/tex]

4. Matching the exponents:
Given that \( 2^x = 32 \) and also \( 32 = 2^5 \), we can see that:
[tex]\[ 2^x = 2^5 \][/tex]

5. Equating the exponents:
Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ x = 5 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] that satisfies the equation [tex]\( \log_2(32) = x \)[/tex] is [tex]\( \boxed{5} \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.