Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Simplify the expression.

[tex]\[
\left(\frac{3}{x}\right)^4
\][/tex]


Sagot :

Let's simplify the expression \(\left(\frac{3}{x}\right)^4\) step by step.

1. Initial Expression:
[tex]\[ \left(\frac{3}{x}\right)^4 \][/tex]

2. Applying the Exponent:
When you raise a fraction to a power, you apply the exponent to both the numerator and the denominator. So,
[tex]\[ \left(\frac{3}{x}\right)^4 = \frac{3^4}{x^4} \][/tex]

3. Calculating the Exponents:
Calculate \(3^4\):
[tex]\[ 3^4 = 3 \times 3 \times 3 \times 3 = 81 \][/tex]
The \(x^4\) term remains as it is:
[tex]\[ x^4 \][/tex]

4. Final Simplified Expression:
Combine the results from the numerator and the denominator:
[tex]\[ \frac{3^4}{x^4} = \frac{81}{x^4} \][/tex]

So, the simplified expression is:
[tex]\[ \frac{81}{x^4} \][/tex]

We can write it as \(\frac{81}{x}\). Therefore, the answer to what should be written in the numerator is 81.

[tex]\[ \frac{81}{x^4} \][/tex]