Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
x = 3
Step-by-step explanation:
Given the system of equations:
[tex]\begin{cases} xy = 6 - 2x - 3y\\ yz = 6 - 4y - 2z\\ xz = 30 - 4x - 3z \end{cases}[/tex]
To find the positive solution of x, begin by rearranging the first equation to isolate y:
[tex]xy=6-2x-3y \\\\xy+3y=6-2x \\\\y(x+3)=6-2x \\\\y=\dfrac{6-2x}{x+3},\quad x\neq -3[/tex]
Now, rearrange the second equation and solve for y:
[tex]yz = 6 - 4y - 2z \\\\ yz + 4y= 6 - 2z \\\\ y(z + 4)= 6 - 2z \\\\ y=\dfrac{6 - 2z}{z + 4},\quad z\neq -4[/tex]
Set the equations equal to each other and solve for z:
[tex]\dfrac{6-2x}{x+3}=\dfrac{6 - 2z}{z + 4} \\\\ (z+4)(6-2x)=(6-2z)(x+3) \\\\ 6z-2xz+24-8x=6x+18-2xz-6z \\\\ 6z-2xz+2xz+6z=6x+18-24 +8x\\\\ 12z=14x-6 \\\\14x=12z+6 \\\\ 7x=6z+3\\\\6z=7x-3\\\\z=\dfrac{7x-3}{6},\quad x\neq -3[/tex]
Rearrange the third equation to isolate z:
[tex]xz = 30 - 4x - 3z \\\\ xz +3z= 30 - 4x \\\\ z(x+3)=30-4x\\\\z=\dfrac{30-4x}{x+3}, \quad x\neq 3[/tex]
Now, set the two equations for z equal to each other and solve for x:
[tex]\dfrac{7x-3}{6}=\dfrac{30-4x}{x+3} \\\\ (7x-3)(x+3)=6(30-4x) \\\\ 7x^2+21x-3x-9=180-24x \\\\7x^2+18x-9=180-24x \\\\7x^2+42x-189=0 \\\\7(x^2+6x-27)=0\\\\x^2+6x-27=0\\\\x^2+9x-3x-27=0\\\\x(x+9)-3(x+9)=0\\\\(x-3)(x-9)=0\\\\\\x-3=0 \implies x=3\\\\x+9=0 \implies x=-9[/tex]
Therefore, the positive solution of x is:
[tex]\Large\boxed{\boxed{x=3}}[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.