Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's simplify the given expression step by step.
We start with the expression:
[tex]\[ 2b^2(3b^2 + b - 17) \][/tex]
### Step 1: Distribute \( 2b^2 \) through the expression inside the parentheses.
First, multiply \( 2b^2 \) by each term inside the parentheses individually:
1. \( 2b^2 \cdot 3b^2 \):
[tex]\[ = 6b^4 \][/tex]
2. \( 2b^2 \cdot b \):
[tex]\[ = 2b^3 \][/tex]
3. \( 2b^2 \cdot (-17) \):
[tex]\[ = -34b^2 \][/tex]
### Step 2: Combine the results.
After multiplying, we combine all the terms together:
[tex]\[6b^4 + 2b^3 - 34b^2\][/tex]
### Step 3: Identify the coefficients and other requested details.
From our simplified expression \( 6b^4 + 2b^3 - 34b^2 \), we can see:
1. The power of the highest degree term (\(b\)) is \(4\). Therefore, \( 6b^{[4]} \).
2. The coefficient of the \(b^3\) term is \(2\).
3. Notice that there is no \(b\) term in the simplified expression, so its coefficient is \(0\).
### Conclusion:
The simplified form of the expression is:
[tex]\[ 6b^4 + 2b^3 - 34b^2 \][/tex]
In the expression given in the question:
[tex]\[ 6b^{[4]} + \square b^3 - \square b \][/tex]
It translates to:
[tex]\[ 6b^{[4]} + 2b^3 - 0b \][/tex]
Thus:
[tex]\[ 6b^{[4]} + 2b^3 - 0b \][/tex]
We start with the expression:
[tex]\[ 2b^2(3b^2 + b - 17) \][/tex]
### Step 1: Distribute \( 2b^2 \) through the expression inside the parentheses.
First, multiply \( 2b^2 \) by each term inside the parentheses individually:
1. \( 2b^2 \cdot 3b^2 \):
[tex]\[ = 6b^4 \][/tex]
2. \( 2b^2 \cdot b \):
[tex]\[ = 2b^3 \][/tex]
3. \( 2b^2 \cdot (-17) \):
[tex]\[ = -34b^2 \][/tex]
### Step 2: Combine the results.
After multiplying, we combine all the terms together:
[tex]\[6b^4 + 2b^3 - 34b^2\][/tex]
### Step 3: Identify the coefficients and other requested details.
From our simplified expression \( 6b^4 + 2b^3 - 34b^2 \), we can see:
1. The power of the highest degree term (\(b\)) is \(4\). Therefore, \( 6b^{[4]} \).
2. The coefficient of the \(b^3\) term is \(2\).
3. Notice that there is no \(b\) term in the simplified expression, so its coefficient is \(0\).
### Conclusion:
The simplified form of the expression is:
[tex]\[ 6b^4 + 2b^3 - 34b^2 \][/tex]
In the expression given in the question:
[tex]\[ 6b^{[4]} + \square b^3 - \square b \][/tex]
It translates to:
[tex]\[ 6b^{[4]} + 2b^3 - 0b \][/tex]
Thus:
[tex]\[ 6b^{[4]} + 2b^3 - 0b \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.