At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Simplify the following expression.

[tex]\[ (x+3)^2 \][/tex]

Sagot :

Certainly! Let's simplify the given expression step-by-step:

The expression to simplify is:
[tex]\[ (x + 3)^2 \][/tex]

To simplify \((x + 3)^2\), we can use the formula for the square of a binomial:
[tex]\[ (a + b)^2 = a^2 + 2ab + b^2 \][/tex]

Here, \(a = x\) and \(b = 3\). Applying the formula, we get:
[tex]\[ (x + 3)^2 = x^2 + 2(x)(3) + 3^2 \][/tex]

Now, let's compute each term individually:

1. \(a^2\), where \(a = x\):
[tex]\[ x^2 \][/tex]

2. \(2ab\), where \(a = x\) and \(b = 3\):
[tex]\[ 2(x)(3) = 6x \][/tex]

3. \(b^2\), where \(b = 3\):
[tex]\[ 3^2 = 9 \][/tex]

Putting it all together, we have:
[tex]\[ (x + 3)^2 = x^2 + 6x + 9 \][/tex]

Hence, the simplified form of the expression \((x + 3)^2\) is:
[tex]\[ x^2 + 6x + 9 \][/tex]