Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's analyze the expression \(12d - 26c\) to determine which statements about rewriting it as a product are accurate and relevant.
### Identifying the Greatest Common Factor (GCF)
First, we observe the coefficients of the terms:
- The coefficient of \(d\) is 12.
- The coefficient of \(c\) is 26.
To find the GCF of 12 and 26, consider the factors of each number:
- Factors of 12: \(1, 2, 3, 4, 6, 12\)
- Factors of 26: \(1, 2, 13, 26\)
The greatest common factor (GCF) is the largest number that appears in both lists of factors. Here, the GCF of 12 and 26 is 2.
### Factoring the Expression
Given the GCF is 2, we can factor the expression \(12d - 26c\) as follows:
[tex]\[ 12d - 26c = 2(6d - 13c) \][/tex]
### Let's Analyze the Options
1. The GCF of the numbers in each term in the expression is 2.
- This statement is accurate. We identified that the GCF of 12 and 26 is indeed 2.
2. The GCF of the numbers in each term in the expression is 4.
- This statement is not accurate. We determined the GCF to be 2, not 4.
3. The GCF of the variables in each term in the expression is \(cd\).
- This statement is not relevant since the variables \(d\) and \(c\) do not have common factors (they are for different terms).
4. The factored expression is \(2(6d - 13c)\).
- This statement is accurate. The expression \(12d - 26c\) can be factored into \(2(6d - 13c)\).
5. The factored expression is \(2 \operatorname{cod}(6 - 13)\).
- This statement does not make sense in the context of factoring algebraic expressions and contains elements that are not algebraically correct.
### Conclusion
The accurate and relevant statements about rewriting \(12d - 26c\) as a product are:
- The GCF of the numbers in each term in the expression is 2.
- The factored expression is [tex]\(2(6d - 13c)\)[/tex].
### Identifying the Greatest Common Factor (GCF)
First, we observe the coefficients of the terms:
- The coefficient of \(d\) is 12.
- The coefficient of \(c\) is 26.
To find the GCF of 12 and 26, consider the factors of each number:
- Factors of 12: \(1, 2, 3, 4, 6, 12\)
- Factors of 26: \(1, 2, 13, 26\)
The greatest common factor (GCF) is the largest number that appears in both lists of factors. Here, the GCF of 12 and 26 is 2.
### Factoring the Expression
Given the GCF is 2, we can factor the expression \(12d - 26c\) as follows:
[tex]\[ 12d - 26c = 2(6d - 13c) \][/tex]
### Let's Analyze the Options
1. The GCF of the numbers in each term in the expression is 2.
- This statement is accurate. We identified that the GCF of 12 and 26 is indeed 2.
2. The GCF of the numbers in each term in the expression is 4.
- This statement is not accurate. We determined the GCF to be 2, not 4.
3. The GCF of the variables in each term in the expression is \(cd\).
- This statement is not relevant since the variables \(d\) and \(c\) do not have common factors (they are for different terms).
4. The factored expression is \(2(6d - 13c)\).
- This statement is accurate. The expression \(12d - 26c\) can be factored into \(2(6d - 13c)\).
5. The factored expression is \(2 \operatorname{cod}(6 - 13)\).
- This statement does not make sense in the context of factoring algebraic expressions and contains elements that are not algebraically correct.
### Conclusion
The accurate and relevant statements about rewriting \(12d - 26c\) as a product are:
- The GCF of the numbers in each term in the expression is 2.
- The factored expression is [tex]\(2(6d - 13c)\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.