Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's break down the problem step by step to find the speed of a point on the equator of the pulsar.
1. Understand the given information:
- The pulsar rotates 30 times per second.
- The diameter of the pulsar is 12 km.
2. Find the radius:
- The radius is half of the diameter. Thus, the radius is:
[tex]\[ \text{Radius} = \frac{\text{Diameter}}{2} = \frac{12 \text{ km}}{2} = 6 \text{ km} \][/tex]
3. Calculate the circumference of the circle (equator) of the pulsar:
- The circumference of a circle is given by the formula:
[tex]\[ \text{Circumference} = 2 \pi \times \text{Radius} \][/tex]
- Substituting the radius we found:
[tex]\[ \text{Circumference} = 2 \pi \times 6 \text{ km} = 37.69911184307752 \text{ km} \][/tex]
4. Determine the linear speed:
- Linear speed can be found by multiplying the circumference by the rotation rate:
[tex]\[ \text{Speed} = \text{Circumference} \times \text{Rotation rate} = 37.69911184307752 \text{ km} \times 30 \text{ rotations per second} \][/tex]
- Performing this calculation:
[tex]\[ \text{Speed} = 1130.9733552923256 \text{ km/s} \][/tex]
5. Round the result to 3 significant figures:
- Rounding 1130.9733552923256 to 3 significant figures:
[tex]\[ \text{Rounded speed} = 1130.973 \text{ km/s} \][/tex]
Therefore, the speed of a point on the equator of the pulsar, correct to 3 significant figures, is [tex]\( 1130.973 \text{ km/s} \)[/tex].
1. Understand the given information:
- The pulsar rotates 30 times per second.
- The diameter of the pulsar is 12 km.
2. Find the radius:
- The radius is half of the diameter. Thus, the radius is:
[tex]\[ \text{Radius} = \frac{\text{Diameter}}{2} = \frac{12 \text{ km}}{2} = 6 \text{ km} \][/tex]
3. Calculate the circumference of the circle (equator) of the pulsar:
- The circumference of a circle is given by the formula:
[tex]\[ \text{Circumference} = 2 \pi \times \text{Radius} \][/tex]
- Substituting the radius we found:
[tex]\[ \text{Circumference} = 2 \pi \times 6 \text{ km} = 37.69911184307752 \text{ km} \][/tex]
4. Determine the linear speed:
- Linear speed can be found by multiplying the circumference by the rotation rate:
[tex]\[ \text{Speed} = \text{Circumference} \times \text{Rotation rate} = 37.69911184307752 \text{ km} \times 30 \text{ rotations per second} \][/tex]
- Performing this calculation:
[tex]\[ \text{Speed} = 1130.9733552923256 \text{ km/s} \][/tex]
5. Round the result to 3 significant figures:
- Rounding 1130.9733552923256 to 3 significant figures:
[tex]\[ \text{Rounded speed} = 1130.973 \text{ km/s} \][/tex]
Therefore, the speed of a point on the equator of the pulsar, correct to 3 significant figures, is [tex]\( 1130.973 \text{ km/s} \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.