Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! To solve this problem, let's carefully follow these steps:
1. Understand Ratios and Volumes:
- The ratio of the radii of the first sphere to the second sphere is given as \( r_1 : r_2 = 2 : 3 \).
- We are given the volume of the second sphere, \( V_2 = 20 \, \text{cm}^3 \).
- We need to calculate the volume of the first sphere, \( V_1 \).
2. Volume Relationship in Spheres:
- The volume \( V \) of a sphere is related to its radius \( r \) by the formula:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
- Therefore, the volume ratio of two spheres can be written in terms of the ratio of their radii:
[tex]\[ \frac{V_1}{V_2} = \left(\frac{r_1}{r_2}\right)^3 \][/tex]
3. Apply the Ratios Given:
- Substituting the given ratio of radii (\( \frac{r_1}{r_2} = \frac{2}{3} \)):
[tex]\[ \left(\frac{r_1}{r_2}\right)^3 = \left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3} = \frac{8}{27} \][/tex]
4. Determine the Volume of the First Sphere:
- Using the ratio of the volumes:
[tex]\[ \frac{V_1}{V_2} = \frac{8}{27} \][/tex]
- We know \( V_2 = 20 \, \text{cm}^3 \), so:
[tex]\[ V_1 = V_2 \times \frac{8}{27} = 20 \times \frac{8}{27} \][/tex]
5. Calculate the Result:
- Perform the multiplication:
[tex]\[ V_1 = 20 \times \frac{8}{27} = \frac{160}{27} \][/tex]
- Simplify the fraction:
[tex]\[ V_1 \approx 5.925925925925925 \][/tex]
So, the volume of the first sphere is approximately [tex]\( 5.93 \, \text{cm}^3 \)[/tex]. The precise value is [tex]\( 5.925925925925925 \, \text{cm}^3 \)[/tex].
1. Understand Ratios and Volumes:
- The ratio of the radii of the first sphere to the second sphere is given as \( r_1 : r_2 = 2 : 3 \).
- We are given the volume of the second sphere, \( V_2 = 20 \, \text{cm}^3 \).
- We need to calculate the volume of the first sphere, \( V_1 \).
2. Volume Relationship in Spheres:
- The volume \( V \) of a sphere is related to its radius \( r \) by the formula:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
- Therefore, the volume ratio of two spheres can be written in terms of the ratio of their radii:
[tex]\[ \frac{V_1}{V_2} = \left(\frac{r_1}{r_2}\right)^3 \][/tex]
3. Apply the Ratios Given:
- Substituting the given ratio of radii (\( \frac{r_1}{r_2} = \frac{2}{3} \)):
[tex]\[ \left(\frac{r_1}{r_2}\right)^3 = \left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3} = \frac{8}{27} \][/tex]
4. Determine the Volume of the First Sphere:
- Using the ratio of the volumes:
[tex]\[ \frac{V_1}{V_2} = \frac{8}{27} \][/tex]
- We know \( V_2 = 20 \, \text{cm}^3 \), so:
[tex]\[ V_1 = V_2 \times \frac{8}{27} = 20 \times \frac{8}{27} \][/tex]
5. Calculate the Result:
- Perform the multiplication:
[tex]\[ V_1 = 20 \times \frac{8}{27} = \frac{160}{27} \][/tex]
- Simplify the fraction:
[tex]\[ V_1 \approx 5.925925925925925 \][/tex]
So, the volume of the first sphere is approximately [tex]\( 5.93 \, \text{cm}^3 \)[/tex]. The precise value is [tex]\( 5.925925925925925 \, \text{cm}^3 \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.