Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the integral \(\int x \operatorname{cosec}^2 x \, dx\), we will use integration by parts, which is given by the formula:
[tex]\[ \int u \, dv = uv - \int v \, du \][/tex]
Here, we need to identify parts of the integrand that fit \(u\) and \(dv\). Let's choose:
[tex]\[ u = x \quad \text{and} \quad dv = \operatorname{cosec}^2 x \, dx \][/tex]
Next, we need to compute \(du\) and \(v\):
1. Differentiate \(u = x\):
[tex]\[ du = dx \][/tex]
2. Integrate \(dv = \operatorname{cosec}^2 x \, dx\):
[tex]\[ v = -\cot x \][/tex]
Using the integration by parts formula, we now have:
[tex]\[ \int x \operatorname{cosec}^2 x \, dx = uv - \int v \, du \][/tex]
Substitute \(u\), \(v\), \(du\), and \(dv\) into the formula:
[tex]\[ \int x \operatorname{cosec}^2 x \, dx = x(-\cot x) - \int (-\cot x) \, dx \][/tex]
Simplify the equation:
[tex]\[ \int x \operatorname{cosec}^2 x \, dx = -x \cot x + \int \cot x \, dx \][/tex]
Next, solve \(\int \cot x \, dx\):
The integral \(\int \cot x \, dx\) is a standard integral, and its result is:
[tex]\[ \int \cot x \, dx = \log |\sin x| \][/tex]
Substitute this result back into our previous equation:
[tex]\[ \int x \operatorname{cosec}^2 x \, dx = -x \cot x + \log |\sin x| \][/tex]
Thus, the final solution to the integral \(\int x \operatorname{cosec}^2 x \, dx\) is:
[tex]\[ -x \cot x + \log |\sin x| + C \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.
[tex]\[ \int u \, dv = uv - \int v \, du \][/tex]
Here, we need to identify parts of the integrand that fit \(u\) and \(dv\). Let's choose:
[tex]\[ u = x \quad \text{and} \quad dv = \operatorname{cosec}^2 x \, dx \][/tex]
Next, we need to compute \(du\) and \(v\):
1. Differentiate \(u = x\):
[tex]\[ du = dx \][/tex]
2. Integrate \(dv = \operatorname{cosec}^2 x \, dx\):
[tex]\[ v = -\cot x \][/tex]
Using the integration by parts formula, we now have:
[tex]\[ \int x \operatorname{cosec}^2 x \, dx = uv - \int v \, du \][/tex]
Substitute \(u\), \(v\), \(du\), and \(dv\) into the formula:
[tex]\[ \int x \operatorname{cosec}^2 x \, dx = x(-\cot x) - \int (-\cot x) \, dx \][/tex]
Simplify the equation:
[tex]\[ \int x \operatorname{cosec}^2 x \, dx = -x \cot x + \int \cot x \, dx \][/tex]
Next, solve \(\int \cot x \, dx\):
The integral \(\int \cot x \, dx\) is a standard integral, and its result is:
[tex]\[ \int \cot x \, dx = \log |\sin x| \][/tex]
Substitute this result back into our previous equation:
[tex]\[ \int x \operatorname{cosec}^2 x \, dx = -x \cot x + \log |\sin x| \][/tex]
Thus, the final solution to the integral \(\int x \operatorname{cosec}^2 x \, dx\) is:
[tex]\[ -x \cot x + \log |\sin x| + C \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.