Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the integral \(\int x \operatorname{cosec}^2 x \, dx\), we will use integration by parts, which is given by the formula:
[tex]\[ \int u \, dv = uv - \int v \, du \][/tex]
Here, we need to identify parts of the integrand that fit \(u\) and \(dv\). Let's choose:
[tex]\[ u = x \quad \text{and} \quad dv = \operatorname{cosec}^2 x \, dx \][/tex]
Next, we need to compute \(du\) and \(v\):
1. Differentiate \(u = x\):
[tex]\[ du = dx \][/tex]
2. Integrate \(dv = \operatorname{cosec}^2 x \, dx\):
[tex]\[ v = -\cot x \][/tex]
Using the integration by parts formula, we now have:
[tex]\[ \int x \operatorname{cosec}^2 x \, dx = uv - \int v \, du \][/tex]
Substitute \(u\), \(v\), \(du\), and \(dv\) into the formula:
[tex]\[ \int x \operatorname{cosec}^2 x \, dx = x(-\cot x) - \int (-\cot x) \, dx \][/tex]
Simplify the equation:
[tex]\[ \int x \operatorname{cosec}^2 x \, dx = -x \cot x + \int \cot x \, dx \][/tex]
Next, solve \(\int \cot x \, dx\):
The integral \(\int \cot x \, dx\) is a standard integral, and its result is:
[tex]\[ \int \cot x \, dx = \log |\sin x| \][/tex]
Substitute this result back into our previous equation:
[tex]\[ \int x \operatorname{cosec}^2 x \, dx = -x \cot x + \log |\sin x| \][/tex]
Thus, the final solution to the integral \(\int x \operatorname{cosec}^2 x \, dx\) is:
[tex]\[ -x \cot x + \log |\sin x| + C \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.
[tex]\[ \int u \, dv = uv - \int v \, du \][/tex]
Here, we need to identify parts of the integrand that fit \(u\) and \(dv\). Let's choose:
[tex]\[ u = x \quad \text{and} \quad dv = \operatorname{cosec}^2 x \, dx \][/tex]
Next, we need to compute \(du\) and \(v\):
1. Differentiate \(u = x\):
[tex]\[ du = dx \][/tex]
2. Integrate \(dv = \operatorname{cosec}^2 x \, dx\):
[tex]\[ v = -\cot x \][/tex]
Using the integration by parts formula, we now have:
[tex]\[ \int x \operatorname{cosec}^2 x \, dx = uv - \int v \, du \][/tex]
Substitute \(u\), \(v\), \(du\), and \(dv\) into the formula:
[tex]\[ \int x \operatorname{cosec}^2 x \, dx = x(-\cot x) - \int (-\cot x) \, dx \][/tex]
Simplify the equation:
[tex]\[ \int x \operatorname{cosec}^2 x \, dx = -x \cot x + \int \cot x \, dx \][/tex]
Next, solve \(\int \cot x \, dx\):
The integral \(\int \cot x \, dx\) is a standard integral, and its result is:
[tex]\[ \int \cot x \, dx = \log |\sin x| \][/tex]
Substitute this result back into our previous equation:
[tex]\[ \int x \operatorname{cosec}^2 x \, dx = -x \cot x + \log |\sin x| \][/tex]
Thus, the final solution to the integral \(\int x \operatorname{cosec}^2 x \, dx\) is:
[tex]\[ -x \cot x + \log |\sin x| + C \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.