Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's solve the problem step-by-step.
Given the function:
[tex]\[ y = \ln\left(e^{3x^2} - \cos^9(x^2 + 3)\right) \][/tex]
We need to find the derivative \(\frac{dy}{dx}\).
Step 1: Identify the outer function and the inner function.
[tex]\[ u = e^{3x^2} - \cos^9(x^2 + 3) \][/tex]
[tex]\[ y = \ln(u) \][/tex]
Step 2: Use the chain rule of differentiation.
[tex]\[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \][/tex]
Since \( y = \ln(u) \),
[tex]\[ \frac{dy}{du} = \frac{1}{u} \][/tex]
Step 3: Differentiate the inner function \( u \) with respect to \( x \).
[tex]\[ u = e^{3x^2} - \cos^9(x^2 + 3) \][/tex]
[tex]\[ \frac{du}{dx} = \frac{d}{dx}\left(e^{3x^2}\right) - \frac{d}{dx}\left(\cos^9(x^2 + 3)\right) \][/tex]
Step 4: Differentiate \( e^{3x^2} \) with respect to \( x \).
[tex]\[ \frac{d}{dx}\left(e^{3x^2}\right) = e^{3x^2} \cdot \frac{d}{dx}(3x^2) \][/tex]
[tex]\[ \frac{d}{dx}(3x^2) = 6x \][/tex]
So,
[tex]\[ \frac{d}{dx}\left(e^{3x^2}\right) = 6x \cdot e^{3x^2} \][/tex]
Step 5: Differentiate \( \cos^9(x^2 + 3) \) with respect to \( x \).
Using the chain rule again, let \( v = \cos(x^2 + 3) \), so \(\cos^9(x^2 + 3) = v^9\).
[tex]\[ \frac{d}{dx}\left(\cos^9(x^2 + 3)\right) = 9\cos^8(x^2 + 3) \cdot \frac{d}{dx}\left(\cos(x^2 + 3)\right) \][/tex]
Now, differentiate \( \cos(x^2 + 3) \):
[tex]\[ \frac{d}{dx}\left(\cos(x^2 + 3)\right) = -\sin(x^2 + 3) \cdot \frac{d}{dx}(x^2 + 3) \][/tex]
[tex]\[ \frac{d}{dx}(x^2 + 3) = 2x \][/tex]
So,
[tex]\[ \frac{d}{dx}\left(\cos(x^2 + 3)\right) = -2x \sin(x^2 + 3) \][/tex]
[tex]\[ \frac{d}{dx}\left(\cos^9(x^2 + 3)\right) = 9 \cdot \cos^8(x^2 + 3) \cdot (-2x \sin(x^2 + 3)) \][/tex]
[tex]\[ = -18x \cos^8(x^2 + 3) \sin(x^2 + 3) \][/tex]
Step 6: Combine the results from Steps 4 and 5.
[tex]\[ \frac{du}{dx} = 6x \cdot e^{3x^2} - 18x \cos^8(x^2 + 3) \sin(x^2 + 3) \][/tex]
Step 7: Substitute back into the chain rule expression.
[tex]\[ \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \][/tex]
[tex]\[ = \frac{1}{e^{3x^2} - \cos^9(x^2 + 3)} \cdot (6x e^{3x^2} - 18x \cos^8(x^2 + 3) \sin(x^2 + 3)) \][/tex]
[tex]\[ = \frac{6x e^{3x^2} - 18x \cos^8(x^2 + 3) \sin(x^2 + 3)}{e^{3x^2} - \cos^9(x^2 + 3)} \][/tex]
Therefore, the derivative is:
[tex]\[ \frac{dy}{dx} = \frac{6x e^{3x^2} + 18x \sin(x^2 + 3) \cos^8(x^2 + 3)}{e^{3x^2} - \cos^9(x^2 + 3)} \][/tex]
Given the function:
[tex]\[ y = \ln\left(e^{3x^2} - \cos^9(x^2 + 3)\right) \][/tex]
We need to find the derivative \(\frac{dy}{dx}\).
Step 1: Identify the outer function and the inner function.
[tex]\[ u = e^{3x^2} - \cos^9(x^2 + 3) \][/tex]
[tex]\[ y = \ln(u) \][/tex]
Step 2: Use the chain rule of differentiation.
[tex]\[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \][/tex]
Since \( y = \ln(u) \),
[tex]\[ \frac{dy}{du} = \frac{1}{u} \][/tex]
Step 3: Differentiate the inner function \( u \) with respect to \( x \).
[tex]\[ u = e^{3x^2} - \cos^9(x^2 + 3) \][/tex]
[tex]\[ \frac{du}{dx} = \frac{d}{dx}\left(e^{3x^2}\right) - \frac{d}{dx}\left(\cos^9(x^2 + 3)\right) \][/tex]
Step 4: Differentiate \( e^{3x^2} \) with respect to \( x \).
[tex]\[ \frac{d}{dx}\left(e^{3x^2}\right) = e^{3x^2} \cdot \frac{d}{dx}(3x^2) \][/tex]
[tex]\[ \frac{d}{dx}(3x^2) = 6x \][/tex]
So,
[tex]\[ \frac{d}{dx}\left(e^{3x^2}\right) = 6x \cdot e^{3x^2} \][/tex]
Step 5: Differentiate \( \cos^9(x^2 + 3) \) with respect to \( x \).
Using the chain rule again, let \( v = \cos(x^2 + 3) \), so \(\cos^9(x^2 + 3) = v^9\).
[tex]\[ \frac{d}{dx}\left(\cos^9(x^2 + 3)\right) = 9\cos^8(x^2 + 3) \cdot \frac{d}{dx}\left(\cos(x^2 + 3)\right) \][/tex]
Now, differentiate \( \cos(x^2 + 3) \):
[tex]\[ \frac{d}{dx}\left(\cos(x^2 + 3)\right) = -\sin(x^2 + 3) \cdot \frac{d}{dx}(x^2 + 3) \][/tex]
[tex]\[ \frac{d}{dx}(x^2 + 3) = 2x \][/tex]
So,
[tex]\[ \frac{d}{dx}\left(\cos(x^2 + 3)\right) = -2x \sin(x^2 + 3) \][/tex]
[tex]\[ \frac{d}{dx}\left(\cos^9(x^2 + 3)\right) = 9 \cdot \cos^8(x^2 + 3) \cdot (-2x \sin(x^2 + 3)) \][/tex]
[tex]\[ = -18x \cos^8(x^2 + 3) \sin(x^2 + 3) \][/tex]
Step 6: Combine the results from Steps 4 and 5.
[tex]\[ \frac{du}{dx} = 6x \cdot e^{3x^2} - 18x \cos^8(x^2 + 3) \sin(x^2 + 3) \][/tex]
Step 7: Substitute back into the chain rule expression.
[tex]\[ \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \][/tex]
[tex]\[ = \frac{1}{e^{3x^2} - \cos^9(x^2 + 3)} \cdot (6x e^{3x^2} - 18x \cos^8(x^2 + 3) \sin(x^2 + 3)) \][/tex]
[tex]\[ = \frac{6x e^{3x^2} - 18x \cos^8(x^2 + 3) \sin(x^2 + 3)}{e^{3x^2} - \cos^9(x^2 + 3)} \][/tex]
Therefore, the derivative is:
[tex]\[ \frac{dy}{dx} = \frac{6x e^{3x^2} + 18x \sin(x^2 + 3) \cos^8(x^2 + 3)}{e^{3x^2} - \cos^9(x^2 + 3)} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.