Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the specific heat capacity of the unknown metal, follow these steps:
1. Determine the change in temperature \(\Delta T\):
- Initial temperature (\( T_{\text{initial}} \)) = \( 225.0^\circ C \)
- Final temperature (\( T_{\text{final}} \)) = \( 19.3^\circ C \)
- \(\Delta T = T_{\text{initial}} - T_{\text{final}} = 225.0^\circ C - 19.3^\circ C\)
- \(\Delta T = 205.7^\circ C\)
2. Identify the given values:
- Thermal energy (\( q \)) = 2020 J
- Mass (\( m \)) = 50.0 g
3. Recall the formula for specific heat capacity (c):
[tex]\[ q = m \cdot c \cdot \Delta T \][/tex]
In this formula, \( q \) is the thermal energy absorbed or released, \( m \) is the mass of the substance, \( c \) is the specific heat capacity, and \( \Delta T \) is the change in temperature.
4. Rearrange the formula to solve for the specific heat capacity (c):
[tex]\[ c = \frac{q}{m \cdot \Delta T} \][/tex]
5. Plug in the known values into the rearranged formula:
[tex]\[ c = \frac{2020 \, \text{J}}{50.0 \, \text{g} \cdot 205.7^\circ C} \][/tex]
6. Calculate the specific heat capacity (c):
[tex]\[ c = \frac{2020}{50.0 \times 205.7} \][/tex]
[tex]\[ c \approx 0.1964 \, \text{J/(g} \cdot \text{°C)} \][/tex]
Thus, the specific heat capacity of the unknown metal is approximately [tex]\( 0.1964 \, \text{J/(g} \cdot \text{°C)} \)[/tex].
1. Determine the change in temperature \(\Delta T\):
- Initial temperature (\( T_{\text{initial}} \)) = \( 225.0^\circ C \)
- Final temperature (\( T_{\text{final}} \)) = \( 19.3^\circ C \)
- \(\Delta T = T_{\text{initial}} - T_{\text{final}} = 225.0^\circ C - 19.3^\circ C\)
- \(\Delta T = 205.7^\circ C\)
2. Identify the given values:
- Thermal energy (\( q \)) = 2020 J
- Mass (\( m \)) = 50.0 g
3. Recall the formula for specific heat capacity (c):
[tex]\[ q = m \cdot c \cdot \Delta T \][/tex]
In this formula, \( q \) is the thermal energy absorbed or released, \( m \) is the mass of the substance, \( c \) is the specific heat capacity, and \( \Delta T \) is the change in temperature.
4. Rearrange the formula to solve for the specific heat capacity (c):
[tex]\[ c = \frac{q}{m \cdot \Delta T} \][/tex]
5. Plug in the known values into the rearranged formula:
[tex]\[ c = \frac{2020 \, \text{J}}{50.0 \, \text{g} \cdot 205.7^\circ C} \][/tex]
6. Calculate the specific heat capacity (c):
[tex]\[ c = \frac{2020}{50.0 \times 205.7} \][/tex]
[tex]\[ c \approx 0.1964 \, \text{J/(g} \cdot \text{°C)} \][/tex]
Thus, the specific heat capacity of the unknown metal is approximately [tex]\( 0.1964 \, \text{J/(g} \cdot \text{°C)} \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.