At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's solve the indefinite integral \(\int \frac{a}{n^2 + x^2} \, dx\).
1. Identify the integrand:
The integrand is \(\frac{a}{n^2 + x^2}\).
2. Recall the standard integral:
The standard integral for \(\int \frac{1}{x^2 + a^2} \, dx\) is \(\frac{1}{a} \arctan \left( \frac{x}{a} \right) + C\).
3. Apply the standard result:
Here, our integrand is of a similar form, but with an extra constant \(a\) multiplied in the numerator.
[tex]\[ \int \frac{a}{n^2 + x^2} \, dx = a \int \frac{1}{n^2 + x^2} \, dx. \][/tex]
4. Adjust the integral accordingly:
We need to match this to the standard result. Note that in our case, \(a^2\) in the standard form corresponds to \(n^2\). Thus, \(a = n\).
This leads to:
[tex]\[ a \int \frac{1}{n^2 + x^2} \, dx = a \cdot \frac{1}{n} \arctan\left(\frac{x}{n}\right) + C. \][/tex]
5. Simplify the expression:
[tex]\[ a \cdot \frac{1}{n} \arctan \left( \frac{x}{n} \right) + C = \frac{a}{n} \arctan \left( \frac{x}{n} \right) + C. \][/tex]
However, upon comparing this step-wise derived solution with the given definite result:
[tex]\[ a \left( - \frac{i}{2} \log ( -i n + x) + \frac{i}{2} \log (i n + x) \right) / n \][/tex]
We can understand that our integrand can also be expressed in terms of complex logarithms due to the presence of imaginary \(i\) in the result.
To summarize,
[tex]\[ \int \frac{a}{n^2 + x^2} \, dx = a \left( - \frac{i}{2} \log ( -i n + x) + \frac{i}{2} \log (i n + x) \right) / n + C \][/tex]
Thus, the more detailed, oriented solution confirms we match the given derived result.
1. Identify the integrand:
The integrand is \(\frac{a}{n^2 + x^2}\).
2. Recall the standard integral:
The standard integral for \(\int \frac{1}{x^2 + a^2} \, dx\) is \(\frac{1}{a} \arctan \left( \frac{x}{a} \right) + C\).
3. Apply the standard result:
Here, our integrand is of a similar form, but with an extra constant \(a\) multiplied in the numerator.
[tex]\[ \int \frac{a}{n^2 + x^2} \, dx = a \int \frac{1}{n^2 + x^2} \, dx. \][/tex]
4. Adjust the integral accordingly:
We need to match this to the standard result. Note that in our case, \(a^2\) in the standard form corresponds to \(n^2\). Thus, \(a = n\).
This leads to:
[tex]\[ a \int \frac{1}{n^2 + x^2} \, dx = a \cdot \frac{1}{n} \arctan\left(\frac{x}{n}\right) + C. \][/tex]
5. Simplify the expression:
[tex]\[ a \cdot \frac{1}{n} \arctan \left( \frac{x}{n} \right) + C = \frac{a}{n} \arctan \left( \frac{x}{n} \right) + C. \][/tex]
However, upon comparing this step-wise derived solution with the given definite result:
[tex]\[ a \left( - \frac{i}{2} \log ( -i n + x) + \frac{i}{2} \log (i n + x) \right) / n \][/tex]
We can understand that our integrand can also be expressed in terms of complex logarithms due to the presence of imaginary \(i\) in the result.
To summarize,
[tex]\[ \int \frac{a}{n^2 + x^2} \, dx = a \left( - \frac{i}{2} \log ( -i n + x) + \frac{i}{2} \log (i n + x) \right) / n + C \][/tex]
Thus, the more detailed, oriented solution confirms we match the given derived result.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.