At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Marie made her first error in Step 1. Let's break down the correct solution step-by-step:
### Step-by-Step Solution:
1. Given Expression: \(\left(x^{-3} y^2 \cdot x\right)^7\)
2. Combine the Powers of \(x\):
- The expression inside the parentheses needs to be simplified first.
- \(x^{-3} \cdot x = x^{-3 + 1} = x^{-2}\)
Therefore, the expression inside the parentheses becomes:
[tex]\[(x^{-2} y^2)\][/tex]
3. Apply the Exponent to Each Factor:
- Now, raise each term inside the parentheses to the power of 7.
- \((x^{-2})^7 = x^{-2 \cdot 7} = x^{-14}\)
- \((y^2)^7 = y^{2 \cdot 7} = y^{14}\)
So the expression becomes:
[tex]\[x^{-14} y^{14}\][/tex]
4. Combine the Powers:
- The simplified expression is now:
[tex]\[x^{-14} y^{14}\][/tex]
5. Final Answer:
- The given expression simplifies to \(x^{-14} y^{14}\).
- Written in standard form, \(x^{-14} y^{14}\) simply means:
[tex]\[ \frac{y^{14}}{x^{14}} \][/tex]
Therefore, the correct simplified version of the given expression is:
[tex]\[ \left(x^{-3} y^2 \cdot x\right)^7 = \frac{y^{14}}{x^{14}} \][/tex]
Thus, Marie's first error was in Step 1, where she incorrectly wrote [tex]\(\left(x^3 y^2 \cdot x\right)^7\)[/tex] instead of correctly simplifying the power of [tex]\(x\)[/tex] first as [tex]\(\left(x^{-2} y^2\right)^7\)[/tex].
### Step-by-Step Solution:
1. Given Expression: \(\left(x^{-3} y^2 \cdot x\right)^7\)
2. Combine the Powers of \(x\):
- The expression inside the parentheses needs to be simplified first.
- \(x^{-3} \cdot x = x^{-3 + 1} = x^{-2}\)
Therefore, the expression inside the parentheses becomes:
[tex]\[(x^{-2} y^2)\][/tex]
3. Apply the Exponent to Each Factor:
- Now, raise each term inside the parentheses to the power of 7.
- \((x^{-2})^7 = x^{-2 \cdot 7} = x^{-14}\)
- \((y^2)^7 = y^{2 \cdot 7} = y^{14}\)
So the expression becomes:
[tex]\[x^{-14} y^{14}\][/tex]
4. Combine the Powers:
- The simplified expression is now:
[tex]\[x^{-14} y^{14}\][/tex]
5. Final Answer:
- The given expression simplifies to \(x^{-14} y^{14}\).
- Written in standard form, \(x^{-14} y^{14}\) simply means:
[tex]\[ \frac{y^{14}}{x^{14}} \][/tex]
Therefore, the correct simplified version of the given expression is:
[tex]\[ \left(x^{-3} y^2 \cdot x\right)^7 = \frac{y^{14}}{x^{14}} \][/tex]
Thus, Marie's first error was in Step 1, where she incorrectly wrote [tex]\(\left(x^3 y^2 \cdot x\right)^7\)[/tex] instead of correctly simplifying the power of [tex]\(x\)[/tex] first as [tex]\(\left(x^{-2} y^2\right)^7\)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.