Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To express \(\log a + \log c + \log f + \log w - \log z\) as a single logarithm, we will use the properties of logarithms, specifically the product and quotient rules.
Step-by-step solution:
1. Combine the sum of logarithms:
We start with the expression \(\log a + \log c + \log f + \log w\).
According to the product rule of logarithms, the sum of logs can be combined into a single log:
[tex]\[ \log a + \log c + \log f + \log w = \log (a \cdot c \cdot f \cdot w) \][/tex]
2. Include the subtraction of a logarithm:
Next, we handle the \(-\log z\) part. According to the quotient rule of logarithms, the subtraction of logs can be written as a division inside a single log:
[tex]\[ \log (a \cdot c \cdot f \cdot w) - \log z = \log \left(\frac{a \cdot c \cdot f \cdot w}{z}\right) \][/tex]
Thus, the expression \(\log a + \log c + \log f + \log w - \log z\) simplifies to a single logarithm:
[tex]\[ \log \left(\frac{a \cdot c \cdot f \cdot w}{z}\right) \][/tex]
So, the final answer is:
[tex]\[ \boxed{\log \left(\frac{a \cdot c \cdot f \cdot w}{z}\right)} \][/tex]
Step-by-step solution:
1. Combine the sum of logarithms:
We start with the expression \(\log a + \log c + \log f + \log w\).
According to the product rule of logarithms, the sum of logs can be combined into a single log:
[tex]\[ \log a + \log c + \log f + \log w = \log (a \cdot c \cdot f \cdot w) \][/tex]
2. Include the subtraction of a logarithm:
Next, we handle the \(-\log z\) part. According to the quotient rule of logarithms, the subtraction of logs can be written as a division inside a single log:
[tex]\[ \log (a \cdot c \cdot f \cdot w) - \log z = \log \left(\frac{a \cdot c \cdot f \cdot w}{z}\right) \][/tex]
Thus, the expression \(\log a + \log c + \log f + \log w - \log z\) simplifies to a single logarithm:
[tex]\[ \log \left(\frac{a \cdot c \cdot f \cdot w}{z}\right) \][/tex]
So, the final answer is:
[tex]\[ \boxed{\log \left(\frac{a \cdot c \cdot f \cdot w}{z}\right)} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.