Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the value of \( k \) for the polynomial \( p(x) = 2x^2 - k\sqrt{2} x + 1 \) given that the sum of its zeroes is \( \sqrt{2} \), let's follow these steps:
1. Recall the general properties of a polynomial:
For any quadratic polynomial \( ax^2 + bx + c \), the sum of the zeroes (roots) is given by the formula:
[tex]\[ \text{Sum of zeroes} = -\frac{b}{a} \][/tex]
2. Identify the coefficients:
In the polynomial \( p(x) = 2x^2 - k\sqrt{2} x + 1 \), the coefficients are:
[tex]\[ a = 2, \quad b = -k\sqrt{2}, \quad c = 1 \][/tex]
3. Set up the relationship using the sum of the zeroes:
We are given that the sum of the zeroes is \( \sqrt{2} \). According to the formula for the sum of the zeroes, we have:
[tex]\[ -\frac{b}{a} = \sqrt{2} \][/tex]
4. Substitute the coefficients into the formula:
Substituting \( b = -k\sqrt{2} \) and \( a = 2 \) into the formula, we get:
[tex]\[ -\frac{-k\sqrt{2}}{2} = \sqrt{2} \][/tex]
5. Simplify the equation:
[tex]\[ \frac{k\sqrt{2}}{2} = \sqrt{2} \][/tex]
6. Solve for \( k \):
To isolate \( k \), multiply both sides by 2:
[tex]\[ k\sqrt{2} = 2\sqrt{2} \][/tex]
Now, divide both sides by \( \sqrt{2} \):
[tex]\[ k = \frac{2\sqrt{2}}{\sqrt{2}} \][/tex]
Simplify the right-hand side:
[tex]\[ k = 2 \][/tex]
Therefore, the value of [tex]\( k \)[/tex] is [tex]\( \boxed{2} \)[/tex].
1. Recall the general properties of a polynomial:
For any quadratic polynomial \( ax^2 + bx + c \), the sum of the zeroes (roots) is given by the formula:
[tex]\[ \text{Sum of zeroes} = -\frac{b}{a} \][/tex]
2. Identify the coefficients:
In the polynomial \( p(x) = 2x^2 - k\sqrt{2} x + 1 \), the coefficients are:
[tex]\[ a = 2, \quad b = -k\sqrt{2}, \quad c = 1 \][/tex]
3. Set up the relationship using the sum of the zeroes:
We are given that the sum of the zeroes is \( \sqrt{2} \). According to the formula for the sum of the zeroes, we have:
[tex]\[ -\frac{b}{a} = \sqrt{2} \][/tex]
4. Substitute the coefficients into the formula:
Substituting \( b = -k\sqrt{2} \) and \( a = 2 \) into the formula, we get:
[tex]\[ -\frac{-k\sqrt{2}}{2} = \sqrt{2} \][/tex]
5. Simplify the equation:
[tex]\[ \frac{k\sqrt{2}}{2} = \sqrt{2} \][/tex]
6. Solve for \( k \):
To isolate \( k \), multiply both sides by 2:
[tex]\[ k\sqrt{2} = 2\sqrt{2} \][/tex]
Now, divide both sides by \( \sqrt{2} \):
[tex]\[ k = \frac{2\sqrt{2}}{\sqrt{2}} \][/tex]
Simplify the right-hand side:
[tex]\[ k = 2 \][/tex]
Therefore, the value of [tex]\( k \)[/tex] is [tex]\( \boxed{2} \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.