Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To calculate \(\Delta H\) (in \(\text{kJ/mol}\)) for the dissolving process of \(\text{Ca(OH)}_2\), we can follow these steps:
1. Identify the given values:
- The heat of the reaction, \(q_{\text{rxn}}\), is given as \(-1677 \text{ joules}\).
- The amount of \(\text{Ca(OH)}_2\) is \(0.100 \text{ mol}\).
2. Set up the expression to calculate \(\Delta H\):
[tex]\[ \Delta H = \frac{q_{\text{rxn}}}{\text{amount of } \text{Ca(OH)}_2} \][/tex]
3. Insert the given values into the expression:
[tex]\[ \Delta H = \frac{-1677 \text{ J}}{0.100 \text{ mol}} \][/tex]
4. Convert the units from joules to kilojoules:
- Recall that \(1 \text{ kJ} = 1000 \text{ J}\).
- Therefore, we multiply by the conversion factor \(\frac{1 \text{ kJ}}{1000 \text{ J}}\).
Now, the full expression is:
[tex]\[ \Delta H = \left(\frac{-1677 \text{ J}}{0.100 \text{ mol}}\right) \times \left(\frac{1 \text{ kJ}}{1000 \text{ J}}\right) \][/tex]
5. Simplify the expression:
[tex]\[ \Delta H = \frac{-1677}{0.100} \times \frac{1}{1000} \text{ kJ/mol} \][/tex]
Calculating the numerical part:
[tex]\[ \frac{-1677}{0.100} = -16770 \][/tex]
Therefore,
[tex]\[ -16770 \times \frac{1}{1000} = -16.77 \text{ kJ/mol} \][/tex]
6. Conclusion:
[tex]\(\Delta H\)[/tex] for the dissolving process of [tex]\(\text{Ca(OH)}_2\)[/tex] is [tex]\(-16.77 \text{ kJ/mol}\)[/tex].
1. Identify the given values:
- The heat of the reaction, \(q_{\text{rxn}}\), is given as \(-1677 \text{ joules}\).
- The amount of \(\text{Ca(OH)}_2\) is \(0.100 \text{ mol}\).
2. Set up the expression to calculate \(\Delta H\):
[tex]\[ \Delta H = \frac{q_{\text{rxn}}}{\text{amount of } \text{Ca(OH)}_2} \][/tex]
3. Insert the given values into the expression:
[tex]\[ \Delta H = \frac{-1677 \text{ J}}{0.100 \text{ mol}} \][/tex]
4. Convert the units from joules to kilojoules:
- Recall that \(1 \text{ kJ} = 1000 \text{ J}\).
- Therefore, we multiply by the conversion factor \(\frac{1 \text{ kJ}}{1000 \text{ J}}\).
Now, the full expression is:
[tex]\[ \Delta H = \left(\frac{-1677 \text{ J}}{0.100 \text{ mol}}\right) \times \left(\frac{1 \text{ kJ}}{1000 \text{ J}}\right) \][/tex]
5. Simplify the expression:
[tex]\[ \Delta H = \frac{-1677}{0.100} \times \frac{1}{1000} \text{ kJ/mol} \][/tex]
Calculating the numerical part:
[tex]\[ \frac{-1677}{0.100} = -16770 \][/tex]
Therefore,
[tex]\[ -16770 \times \frac{1}{1000} = -16.77 \text{ kJ/mol} \][/tex]
6. Conclusion:
[tex]\(\Delta H\)[/tex] for the dissolving process of [tex]\(\text{Ca(OH)}_2\)[/tex] is [tex]\(-16.77 \text{ kJ/mol}\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.