At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's dive into solving for the heat of the reaction step by step.
1. Understanding the problem:
- We are given a chemical reaction:
[tex]\[ 2 \text{HCl} + \text{Mg} \rightarrow \text{MgCl}_2 + \text{H}_2 \][/tex]
- We are provided with the heat of the solution, \( q_{\text{soln}} \), which is \( +9240 \) J.
2. Heat of the solution (\( q_{\text{soln}} \)):
- This value represents the amount of heat absorbed by the solution during the reaction. Since it is positive, it indicates that the solution is absorbing heat.
3. Heat of the reaction (\( q_{\text{rxn}} \)):
- The heat of the reaction (\( q_{\text{rxn}} \)) is the amount of heat released or absorbed by the chemical reaction.
- By convention, the heat of the reaction is the negative of the heat absorbed by the solution. Therefore,
[tex]\[ q_{\text{rxn}} = -q_{\text{soln}} \][/tex]
4. Applying the given values:
- Given \( q_{\text{soln}} = +9240 \) J.
- Thus,
[tex]\[ q_{\text{rxn}} = - (+9240 \text{ J}) = -9240 \text{ J} \][/tex]
5. Conclusion:
- The heat of the reaction, \( q_{\text{rxn}} \), is \( -9240 \) J. This indicates that the reaction is exothermic, meaning it releases \( 9240 \) J of heat to the surroundings.
So, the heat of the reaction \( q_{\text{rxn}} \) is:
[tex]\[ q_{\text{rxn}} = -9240 \text{ J} \][/tex]
1. Understanding the problem:
- We are given a chemical reaction:
[tex]\[ 2 \text{HCl} + \text{Mg} \rightarrow \text{MgCl}_2 + \text{H}_2 \][/tex]
- We are provided with the heat of the solution, \( q_{\text{soln}} \), which is \( +9240 \) J.
2. Heat of the solution (\( q_{\text{soln}} \)):
- This value represents the amount of heat absorbed by the solution during the reaction. Since it is positive, it indicates that the solution is absorbing heat.
3. Heat of the reaction (\( q_{\text{rxn}} \)):
- The heat of the reaction (\( q_{\text{rxn}} \)) is the amount of heat released or absorbed by the chemical reaction.
- By convention, the heat of the reaction is the negative of the heat absorbed by the solution. Therefore,
[tex]\[ q_{\text{rxn}} = -q_{\text{soln}} \][/tex]
4. Applying the given values:
- Given \( q_{\text{soln}} = +9240 \) J.
- Thus,
[tex]\[ q_{\text{rxn}} = - (+9240 \text{ J}) = -9240 \text{ J} \][/tex]
5. Conclusion:
- The heat of the reaction, \( q_{\text{rxn}} \), is \( -9240 \) J. This indicates that the reaction is exothermic, meaning it releases \( 9240 \) J of heat to the surroundings.
So, the heat of the reaction \( q_{\text{rxn}} \) is:
[tex]\[ q_{\text{rxn}} = -9240 \text{ J} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.