Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine how many moles of AgCl can form from the given amount of NaCl, we can follow the steps outlined below:
1. Convert the volume of NaCl solution from milliliters to liters:
Given that the volume of NaCl solution is 35.0 mL, we need to convert this to liters:
[tex]\[ 35.0 \text{ mL} = 35.0 \text{ mL} \times \left(\frac{1 \text{ L}}{1000 \text{ mL}}\right) = 0.0350 \text{ L} \][/tex]
2. Determine the moles of NaCl:
Knowing the molarity (concentration) of the NaCl solution is 1.00 M (moles per liter), we can find the moles of NaCl present:
[tex]\[ \text{Moles of NaCl} = \text{volume in liters} \times \text{molarity} = 0.0350 \text{ L} \times 1.00 \text{ M} = 0.035 \text{ moles of NaCl} \][/tex]
3. Determine the moles of AgCl formed:
From the balanced chemical equation,
[tex]\[ \text{AgNO}_3 + \text{NaCl} \rightarrow \text{AgCl} + \text{NaNO}_3 \][/tex]
we see that 1 mole of NaCl reacts with 1 mole of AgNO₃ to produce 1 mole of AgCl. Therefore, the moles of AgCl formed will be equal to the moles of NaCl reacted.
So, the moles of AgCl formed from the moles of NaCl is:
[tex]\[ 0.035 \text{ moles of AgCl} \][/tex]
Hence, from 35.0 mL of 1.00 M NaCl, [tex]\(0.035\)[/tex] moles of [tex]\( \text{AgCl} \)[/tex] can form.
1. Convert the volume of NaCl solution from milliliters to liters:
Given that the volume of NaCl solution is 35.0 mL, we need to convert this to liters:
[tex]\[ 35.0 \text{ mL} = 35.0 \text{ mL} \times \left(\frac{1 \text{ L}}{1000 \text{ mL}}\right) = 0.0350 \text{ L} \][/tex]
2. Determine the moles of NaCl:
Knowing the molarity (concentration) of the NaCl solution is 1.00 M (moles per liter), we can find the moles of NaCl present:
[tex]\[ \text{Moles of NaCl} = \text{volume in liters} \times \text{molarity} = 0.0350 \text{ L} \times 1.00 \text{ M} = 0.035 \text{ moles of NaCl} \][/tex]
3. Determine the moles of AgCl formed:
From the balanced chemical equation,
[tex]\[ \text{AgNO}_3 + \text{NaCl} \rightarrow \text{AgCl} + \text{NaNO}_3 \][/tex]
we see that 1 mole of NaCl reacts with 1 mole of AgNO₃ to produce 1 mole of AgCl. Therefore, the moles of AgCl formed will be equal to the moles of NaCl reacted.
So, the moles of AgCl formed from the moles of NaCl is:
[tex]\[ 0.035 \text{ moles of AgCl} \][/tex]
Hence, from 35.0 mL of 1.00 M NaCl, [tex]\(0.035\)[/tex] moles of [tex]\( \text{AgCl} \)[/tex] can form.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.