Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve this problem, we will go through the following steps:
1. Determine the mass of the solution:
- Here, 500 mL of water is provided, and since the density of the solution is 1.00 g/mL, we can calculate the mass of the solution.
- Mass of the solution \( = \text{volume of water} \times \text{density of the solution} \)
- Mass of the solution \( = 500 \text{ mL} \times 1.00 \text{ g/mL} = 500.0 \text{ g} \)
2. Calculate the change in temperature (\(\Delta T\)):
- Initial temperature \( T_i = 21.3^{\circ}C \)
- Final temperature \( T_f = 23.5^{\circ}C \)
- Change in temperature \( \Delta T = T_f - T_i \)
- \(\Delta T = 23.5^{\circ}C - 21.3^{\circ}C = 2.2^{\circ}C \)
3. Calculate the heat absorbed by the solution (\(q_{solution}\)):
- The heat absorbed by the solution can be calculated using the formula: \( q = mc\Delta T \)
- Where:
- \( m \) is the mass of the solution \( = 500.0 \text{ g} \)
- \( c \) is the specific heat capacity of the solution \( = 4.18 \text{ J/g}^{\circ}C \)
- \( \Delta T \) is the change in temperature \( = 2.2^{\circ}C \)
- So,
- \( q_{solution} = m \times c \times \Delta T \)
- \( q_{solution} = 500.0 \text{ g} \times 4.18 \text{ J/g}^{\circ}C \times 2.2^{\circ}C \)
- \( q_{solution} = 4598.0 \text{ J} \)
4. Determine the heat of reaction (\(q_{rxn}\)):
- The heat of reaction is the negative of the heat absorbed by the solution.
- Therefore, \( q_{rxn} = -q_{solution} \)
- \( q_{rxn} = -4598.0 \text{ J} \)
So, the heat of reaction, [tex]\( q_{rxn} \)[/tex], is [tex]\( -4598.0 \text{ J} \)[/tex].
1. Determine the mass of the solution:
- Here, 500 mL of water is provided, and since the density of the solution is 1.00 g/mL, we can calculate the mass of the solution.
- Mass of the solution \( = \text{volume of water} \times \text{density of the solution} \)
- Mass of the solution \( = 500 \text{ mL} \times 1.00 \text{ g/mL} = 500.0 \text{ g} \)
2. Calculate the change in temperature (\(\Delta T\)):
- Initial temperature \( T_i = 21.3^{\circ}C \)
- Final temperature \( T_f = 23.5^{\circ}C \)
- Change in temperature \( \Delta T = T_f - T_i \)
- \(\Delta T = 23.5^{\circ}C - 21.3^{\circ}C = 2.2^{\circ}C \)
3. Calculate the heat absorbed by the solution (\(q_{solution}\)):
- The heat absorbed by the solution can be calculated using the formula: \( q = mc\Delta T \)
- Where:
- \( m \) is the mass of the solution \( = 500.0 \text{ g} \)
- \( c \) is the specific heat capacity of the solution \( = 4.18 \text{ J/g}^{\circ}C \)
- \( \Delta T \) is the change in temperature \( = 2.2^{\circ}C \)
- So,
- \( q_{solution} = m \times c \times \Delta T \)
- \( q_{solution} = 500.0 \text{ g} \times 4.18 \text{ J/g}^{\circ}C \times 2.2^{\circ}C \)
- \( q_{solution} = 4598.0 \text{ J} \)
4. Determine the heat of reaction (\(q_{rxn}\)):
- The heat of reaction is the negative of the heat absorbed by the solution.
- Therefore, \( q_{rxn} = -q_{solution} \)
- \( q_{rxn} = -4598.0 \text{ J} \)
So, the heat of reaction, [tex]\( q_{rxn} \)[/tex], is [tex]\( -4598.0 \text{ J} \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.