At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure! Let's solve this step-by-step:
### Step 1: Identify the given information
- Mass of water (\(m_{\text{water}}\)): 500 grams
- This is because 500 mL of water has a density (\(d\)) of 1.00 g/mL, so the mass is the same as the volume in grams.
- Specific heat capacity of water (\(C_{\text{soln}}\)): 4.18 J/g°C
- Initial temperature (\(T_{\text{initial}}\)): 21.3°C
- Final temperature (\(T_{\text{final}}\)): 23.5°C
### Step 2: Calculate the change in temperature (ΔT)
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 23.5\,°C - 21.3\,°C = 2.2\,°C \][/tex]
### Step 3: Calculate the heat absorbed by water (q)
The formula to calculate the heat absorbed by the water is:
[tex]\[ q = m_{\text{water}} \times C_{\text{soln}} \times \Delta T \][/tex]
Substitute the known values into the equation:
[tex]\[ q = 500\,\text{g} \times 4.18\,\text{J/g°C} \times 2.2\,°C \][/tex]
[tex]\[ q = 4598\,\text{J} \][/tex]
### Step 4: Determine the heat of reaction (qrxn)
The heat of reaction (\(q_{\text{rxn}}\)) is equal in magnitude but opposite in sign to the heat absorbed by the water. This is because the heat absorbed by water originates from the reaction.
[tex]\[ q_{\text{rxn}} = -q \][/tex]
[tex]\[ q_{\text{rxn}} = -4598\,\text{J} \][/tex]
Therefore, the heat of reaction [tex]\( q_{\text{rxn}} \)[/tex] is [tex]\(-4598\,\text{J}\)[/tex].
### Step 1: Identify the given information
- Mass of water (\(m_{\text{water}}\)): 500 grams
- This is because 500 mL of water has a density (\(d\)) of 1.00 g/mL, so the mass is the same as the volume in grams.
- Specific heat capacity of water (\(C_{\text{soln}}\)): 4.18 J/g°C
- Initial temperature (\(T_{\text{initial}}\)): 21.3°C
- Final temperature (\(T_{\text{final}}\)): 23.5°C
### Step 2: Calculate the change in temperature (ΔT)
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 23.5\,°C - 21.3\,°C = 2.2\,°C \][/tex]
### Step 3: Calculate the heat absorbed by water (q)
The formula to calculate the heat absorbed by the water is:
[tex]\[ q = m_{\text{water}} \times C_{\text{soln}} \times \Delta T \][/tex]
Substitute the known values into the equation:
[tex]\[ q = 500\,\text{g} \times 4.18\,\text{J/g°C} \times 2.2\,°C \][/tex]
[tex]\[ q = 4598\,\text{J} \][/tex]
### Step 4: Determine the heat of reaction (qrxn)
The heat of reaction (\(q_{\text{rxn}}\)) is equal in magnitude but opposite in sign to the heat absorbed by the water. This is because the heat absorbed by water originates from the reaction.
[tex]\[ q_{\text{rxn}} = -q \][/tex]
[tex]\[ q_{\text{rxn}} = -4598\,\text{J} \][/tex]
Therefore, the heat of reaction [tex]\( q_{\text{rxn}} \)[/tex] is [tex]\(-4598\,\text{J}\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.