Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the enthalpy of the reaction (ΔH_rxn), we need to follow a series of steps involving conversions and calculations. Here's a detailed step-by-step solution:
1. Know the Given Values:
- Energy released, \( Q \) = 4610 Joules (J)
- Mass of potassium, \( m \) = 1.00 grams (g)
- Molar mass of potassium, \( M_{\mathrm{K}} \) = 39.10 g/mol
2. Calculate the Number of Moles of Potassium:
The number of moles of potassium, \( n \), can be calculated using the formula:
[tex]\[ n = \frac{m}{M_{\mathrm{K}}} \][/tex]
Substituting the given values:
[tex]\[ n = \frac{1.00 \, \text{g}}{39.10 \, \text{g/mol}} \approx 0.02557544757033248 \, \text{mol} \][/tex]
3. Convert the Energy Released to Kilojoules:
Since enthalpy (ΔH_rxn) is usually given in kilojoules per mole, we need to convert the energy from joules to kilojoules:
[tex]\[ Q_{\mathrm{kJ}} = \frac{Q}{1000} = \frac{4610 \, \text{J}}{1000} = 4.610 \, \text{kJ} \][/tex]
4. Calculate the Enthalpy Change per Mole (ΔH_rxn):
The enthalpy change of the reaction (ΔH_rxn) can be calculated using the formula:
[tex]\[ \Delta H_{\mathrm{rxn}} = \frac{Q_{\mathrm{kJ}}}{n} \][/tex]
Substituting the values we have:
[tex]\[ \Delta H_{\mathrm{rxn}} = \frac{4.610 \, \text{kJ}}{0.02557544757033248 \, \text{mol}} \approx 180.251 \, \text{kJ/mol} \][/tex]
Therefore, the enthalpy of the reaction, [tex]\( \Delta H_{\mathrm{rxn}} \)[/tex], is approximately 180.251 kJ/mol.
1. Know the Given Values:
- Energy released, \( Q \) = 4610 Joules (J)
- Mass of potassium, \( m \) = 1.00 grams (g)
- Molar mass of potassium, \( M_{\mathrm{K}} \) = 39.10 g/mol
2. Calculate the Number of Moles of Potassium:
The number of moles of potassium, \( n \), can be calculated using the formula:
[tex]\[ n = \frac{m}{M_{\mathrm{K}}} \][/tex]
Substituting the given values:
[tex]\[ n = \frac{1.00 \, \text{g}}{39.10 \, \text{g/mol}} \approx 0.02557544757033248 \, \text{mol} \][/tex]
3. Convert the Energy Released to Kilojoules:
Since enthalpy (ΔH_rxn) is usually given in kilojoules per mole, we need to convert the energy from joules to kilojoules:
[tex]\[ Q_{\mathrm{kJ}} = \frac{Q}{1000} = \frac{4610 \, \text{J}}{1000} = 4.610 \, \text{kJ} \][/tex]
4. Calculate the Enthalpy Change per Mole (ΔH_rxn):
The enthalpy change of the reaction (ΔH_rxn) can be calculated using the formula:
[tex]\[ \Delta H_{\mathrm{rxn}} = \frac{Q_{\mathrm{kJ}}}{n} \][/tex]
Substituting the values we have:
[tex]\[ \Delta H_{\mathrm{rxn}} = \frac{4.610 \, \text{kJ}}{0.02557544757033248 \, \text{mol}} \approx 180.251 \, \text{kJ/mol} \][/tex]
Therefore, the enthalpy of the reaction, [tex]\( \Delta H_{\mathrm{rxn}} \)[/tex], is approximately 180.251 kJ/mol.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.