Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the enthalpy of the reaction (ΔH_rxn), we need to follow a series of steps involving conversions and calculations. Here's a detailed step-by-step solution:
1. Know the Given Values:
- Energy released, \( Q \) = 4610 Joules (J)
- Mass of potassium, \( m \) = 1.00 grams (g)
- Molar mass of potassium, \( M_{\mathrm{K}} \) = 39.10 g/mol
2. Calculate the Number of Moles of Potassium:
The number of moles of potassium, \( n \), can be calculated using the formula:
[tex]\[ n = \frac{m}{M_{\mathrm{K}}} \][/tex]
Substituting the given values:
[tex]\[ n = \frac{1.00 \, \text{g}}{39.10 \, \text{g/mol}} \approx 0.02557544757033248 \, \text{mol} \][/tex]
3. Convert the Energy Released to Kilojoules:
Since enthalpy (ΔH_rxn) is usually given in kilojoules per mole, we need to convert the energy from joules to kilojoules:
[tex]\[ Q_{\mathrm{kJ}} = \frac{Q}{1000} = \frac{4610 \, \text{J}}{1000} = 4.610 \, \text{kJ} \][/tex]
4. Calculate the Enthalpy Change per Mole (ΔH_rxn):
The enthalpy change of the reaction (ΔH_rxn) can be calculated using the formula:
[tex]\[ \Delta H_{\mathrm{rxn}} = \frac{Q_{\mathrm{kJ}}}{n} \][/tex]
Substituting the values we have:
[tex]\[ \Delta H_{\mathrm{rxn}} = \frac{4.610 \, \text{kJ}}{0.02557544757033248 \, \text{mol}} \approx 180.251 \, \text{kJ/mol} \][/tex]
Therefore, the enthalpy of the reaction, [tex]\( \Delta H_{\mathrm{rxn}} \)[/tex], is approximately 180.251 kJ/mol.
1. Know the Given Values:
- Energy released, \( Q \) = 4610 Joules (J)
- Mass of potassium, \( m \) = 1.00 grams (g)
- Molar mass of potassium, \( M_{\mathrm{K}} \) = 39.10 g/mol
2. Calculate the Number of Moles of Potassium:
The number of moles of potassium, \( n \), can be calculated using the formula:
[tex]\[ n = \frac{m}{M_{\mathrm{K}}} \][/tex]
Substituting the given values:
[tex]\[ n = \frac{1.00 \, \text{g}}{39.10 \, \text{g/mol}} \approx 0.02557544757033248 \, \text{mol} \][/tex]
3. Convert the Energy Released to Kilojoules:
Since enthalpy (ΔH_rxn) is usually given in kilojoules per mole, we need to convert the energy from joules to kilojoules:
[tex]\[ Q_{\mathrm{kJ}} = \frac{Q}{1000} = \frac{4610 \, \text{J}}{1000} = 4.610 \, \text{kJ} \][/tex]
4. Calculate the Enthalpy Change per Mole (ΔH_rxn):
The enthalpy change of the reaction (ΔH_rxn) can be calculated using the formula:
[tex]\[ \Delta H_{\mathrm{rxn}} = \frac{Q_{\mathrm{kJ}}}{n} \][/tex]
Substituting the values we have:
[tex]\[ \Delta H_{\mathrm{rxn}} = \frac{4.610 \, \text{kJ}}{0.02557544757033248 \, \text{mol}} \approx 180.251 \, \text{kJ/mol} \][/tex]
Therefore, the enthalpy of the reaction, [tex]\( \Delta H_{\mathrm{rxn}} \)[/tex], is approximately 180.251 kJ/mol.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.