Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the equilibrium constant \( K_c \) for the given reaction at equilibrium, we can use the equilibrium concentrations given and the formula for the equilibrium constant for the reaction:
[tex]\[ \text{N}_2(g) + 3 \text{H}_2(g) \longleftrightarrow 2 \text{NH}_3(g) \][/tex]
The equilibrium constant expression for this reaction is:
[tex]\[ K_c = \frac{{[\text{NH}_3]^2}}{{[\text{N}_2] \cdot [\text{H}_2]^3}} \][/tex]
Given:
[tex]\[ [\text{NH}_3] = 0.105 \, M \][/tex]
[tex]\[ [\text{N}_2] = 1.1 \, M \][/tex]
[tex]\[ [\text{H}_2] = 1.50 \, M \][/tex]
We substitute these values into the equilibrium constant expression:
[tex]\[ K_c = \frac{{(0.105)^2}}{{(1.1) \cdot (1.50)^3}} \][/tex]
Evaluating the numerator and the denominator:
[tex]\[ \text{Numerator} = (0.105)^2 = 0.011025 \][/tex]
[tex]\[ \text{Denominator} = 1.1 \cdot (1.50)^3 = 1.1 \cdot 3.375 = 3.7125 \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ K_c = \frac{0.011025}{3.7125} \approx 0.0029697 \][/tex]
Rounding this to three significant figures, we get:
[tex]\[ K_c \approx 0.0030 \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction at this temperature is 0.0030.
[tex]\[ \text{N}_2(g) + 3 \text{H}_2(g) \longleftrightarrow 2 \text{NH}_3(g) \][/tex]
The equilibrium constant expression for this reaction is:
[tex]\[ K_c = \frac{{[\text{NH}_3]^2}}{{[\text{N}_2] \cdot [\text{H}_2]^3}} \][/tex]
Given:
[tex]\[ [\text{NH}_3] = 0.105 \, M \][/tex]
[tex]\[ [\text{N}_2] = 1.1 \, M \][/tex]
[tex]\[ [\text{H}_2] = 1.50 \, M \][/tex]
We substitute these values into the equilibrium constant expression:
[tex]\[ K_c = \frac{{(0.105)^2}}{{(1.1) \cdot (1.50)^3}} \][/tex]
Evaluating the numerator and the denominator:
[tex]\[ \text{Numerator} = (0.105)^2 = 0.011025 \][/tex]
[tex]\[ \text{Denominator} = 1.1 \cdot (1.50)^3 = 1.1 \cdot 3.375 = 3.7125 \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ K_c = \frac{0.011025}{3.7125} \approx 0.0029697 \][/tex]
Rounding this to three significant figures, we get:
[tex]\[ K_c \approx 0.0030 \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction at this temperature is 0.0030.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.