Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the remainder when dividing the polynomial \(4x^4 - 6x^3 + 6x^2 - 1\) by the polynomial \(2x^2 - 3\), let's go through the process of polynomial division step-by-step.
### Step 1: Set Up the Division
We start with the dividend \(4x^4 - 6x^3 + 6x^2 - 1\) and the divisor \(2x^2 - 3\).
### Step 2: Divide the Leading Terms
First, we divide the leading term of the dividend, \(4x^4\), by the leading term of the divisor, \(2x^2\):
[tex]\[ \frac{4x^4}{2x^2} = 2x^2 \][/tex]
This gives us the first term of the quotient, which is \(2x^2\).
### Step 3: Multiply and Subtract
Next, we multiply the entire divisor by this term of the quotient:
[tex]\[ (2x^2)(2x^2 - 3) = 4x^4 - 6x^2 \][/tex]
Now, subtract this product from the current dividend:
[tex]\[ (4x^4 - 6x^3 + 6x^2 - 1) - (4x^4 - 6x^2) = -6x^3 + 12x^2 - 1 \][/tex]
### Step 4: Repeat the Process
Now, we repeat the process with the new polynomial \(-6x^3 + 12x^2 - 1\).
#### Divide the Leading Terms
[tex]\[ \frac{-6x^3}{2x^2} = -3x \][/tex]
This gives us the next term of the quotient, which is \(-3x\).
#### Multiply and Subtract
[tex]\[ (-3x)(2x^2 - 3) = -6x^3 + 9x \][/tex]
Now, subtract this product from the current polynomial:
[tex]\[ (-6x^3 + 12x^2 - 1) - (-6x^3 + 9x) = 12x^2 - 9x - 1 \][/tex]
### Step 5: Continue the Process
We continue with the polynomial \(12x^2 - 9x - 1\).
#### Divide the Leading Terms
[tex]\[ \frac{12x^2}{2x^2} = 6 \][/tex]
This gives us the next term of the quotient, which is \(6\).
#### Multiply and Subtract
[tex]\[ (6)(2x^2 - 3) = 12x^2 - 18 \][/tex]
Subtract this product from the new polynomial:
[tex]\[ (12x^2 - 9x - 1) - (12x^2 - 18) = -9x + 17 \][/tex]
### Conclusion
Now, we cannot divide further as the degree of the remainder \(-9x + 17\) is less than the degree of the divisor \(2x^2 - 3\). Therefore, the quotient is \(2x^2 - 3x + 6\), and the remainder is \(17 -9 x\).
The final result of the division is:
[tex]\[ \boxed{(2x^2 - 3x + 6, 17 - 9x)} \][/tex]
where [tex]\(2x^2 - 3x + 6\)[/tex] is the quotient and [tex]\(17 - 9x\)[/tex] is the remainder.
### Step 1: Set Up the Division
We start with the dividend \(4x^4 - 6x^3 + 6x^2 - 1\) and the divisor \(2x^2 - 3\).
### Step 2: Divide the Leading Terms
First, we divide the leading term of the dividend, \(4x^4\), by the leading term of the divisor, \(2x^2\):
[tex]\[ \frac{4x^4}{2x^2} = 2x^2 \][/tex]
This gives us the first term of the quotient, which is \(2x^2\).
### Step 3: Multiply and Subtract
Next, we multiply the entire divisor by this term of the quotient:
[tex]\[ (2x^2)(2x^2 - 3) = 4x^4 - 6x^2 \][/tex]
Now, subtract this product from the current dividend:
[tex]\[ (4x^4 - 6x^3 + 6x^2 - 1) - (4x^4 - 6x^2) = -6x^3 + 12x^2 - 1 \][/tex]
### Step 4: Repeat the Process
Now, we repeat the process with the new polynomial \(-6x^3 + 12x^2 - 1\).
#### Divide the Leading Terms
[tex]\[ \frac{-6x^3}{2x^2} = -3x \][/tex]
This gives us the next term of the quotient, which is \(-3x\).
#### Multiply and Subtract
[tex]\[ (-3x)(2x^2 - 3) = -6x^3 + 9x \][/tex]
Now, subtract this product from the current polynomial:
[tex]\[ (-6x^3 + 12x^2 - 1) - (-6x^3 + 9x) = 12x^2 - 9x - 1 \][/tex]
### Step 5: Continue the Process
We continue with the polynomial \(12x^2 - 9x - 1\).
#### Divide the Leading Terms
[tex]\[ \frac{12x^2}{2x^2} = 6 \][/tex]
This gives us the next term of the quotient, which is \(6\).
#### Multiply and Subtract
[tex]\[ (6)(2x^2 - 3) = 12x^2 - 18 \][/tex]
Subtract this product from the new polynomial:
[tex]\[ (12x^2 - 9x - 1) - (12x^2 - 18) = -9x + 17 \][/tex]
### Conclusion
Now, we cannot divide further as the degree of the remainder \(-9x + 17\) is less than the degree of the divisor \(2x^2 - 3\). Therefore, the quotient is \(2x^2 - 3x + 6\), and the remainder is \(17 -9 x\).
The final result of the division is:
[tex]\[ \boxed{(2x^2 - 3x + 6, 17 - 9x)} \][/tex]
where [tex]\(2x^2 - 3x + 6\)[/tex] is the quotient and [tex]\(17 - 9x\)[/tex] is the remainder.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.